CLASSIFICATION OF DANGEROUS ARRHYTHMIAS USING ECG SCALOGRAMS WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

Authors

DOI:

https://doi.org/10.26577/jpcsit2024020104

Keywords:

Heart disease, arrhythmia, classification, deep convolutional neural networks, scalograms.

Abstract

In modern medicine, the problem of detecting and classifying life-threatening arrhythmias based on ECG data remains relevant and critically important for continuous patient monitoring. This study is dedicated to developing a method for the automatic classification of six classes of dangerous arrhythmias using short ECG segments of 2 seconds duration. Existing methods for detecting dangerous arrhythmias require additional improvements to ensure high accuracy and efficiency. The goal of this research is to develop an effective method for the classification of dangerous arrhythmias to facilitate timely medical intervention. A unique method is proposed, based on transforming ECG signals into scalograms using continuous wavelet transformation. For arrhythmia classification, the AlexNet neural network is employed. The study utilizes data from the PhysioNet database and synthesized ECG data using the SMOTE method. Experimental investigations demonstrated a high accuracy of the proposed method, with an average accuracy of 98.7% for all arrhythmia classes, surpassing previously achieved maximum estimates by other researchers (93.18%). The study has been successfully completed, showcasing scientific novelty and practical significance of the results. The proposed method not only improved existing accuracy estimates but also emphasized the potential of using scalograms and neural networks for recognizing dangerous arrhythmias from ECG data. This opens new horizons for continuous monitoring and timely medical intervention, enhancing the quality of patient care.

Downloads

Download data is not yet available.
        100 4

References

Nemirko A., Manilo L., Tatarinova A., Alekseev B., Evdakova E.. ECG Fragment Database for the Exploration of Dangerous Arrhythmia (version 1.0.0). PhysioNet 2022.

Pandit D., Li Z., Chengyu L., Chattopadhyay S., Aslam N., Peng LC.. A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput Methods Programs Biomed 2017; 144: 61-75. DOI:10.1016/j.cmpb.2017.02.028.

Acharya UR., Fujita H., Oh SL., Hagiwara Y., Tan JH., Adam M., Tan RS.. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 2019; 49(1): 16-27. DOI:10.1007/s10489-018-1179-1.

Haberl R., Jilge G., Pulter R., Steinbeck G.. Spectral mapping of the electrocardiogram with Fourier transform for identification of patients with sustained ventricular tachycardia and coronary artery disease. Eur Heart J 1989;10(4): 316-322.

Tuncer T., Dogan S., Pławiak P., Acharya UR.. Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals. Knowledge-Based Systems 2019; 186: 104923. DOI: 10.1016/j.knosys.2019.104923.

Madeiro JPV., Santos EMB., Cortez PC., Felix JHS., Schlindwein FS.. Evaluating Gaussian and Rayleigh-based mathematical models for T and P-waves in ECG. IEEE Lat Am Trans 2017; 15(5): 843-853. DOI:10.1109/TLA.2017.7910197.

Kennedy A., Finlay DD., Guldenring D., Bond RR., Moran K., McLaughlin J.. Automated detection of atrial fibrillation using RR intervals and multivariate-based classification. J Electrocardiol 2016; 49(6): 871-876. DOI:10.1016/j.jelectrocard.2016.07.033.

Nemirko AP., Popadina AO.. Recognition of lifethreatening arrhythmias by the spectral characteristics of a short electrocardiogram recording [In Russian]. Biotechnosfera 2022; 67(1): 3-8. DOI: 10.25960/bts.2022.1.3.

Olanrewaju R., Ibrahim S., Asnawi AL., Altaf H.. Classification of ECG signals for detection of arrhythmia and congestive heart failure based on continuous wavelet transform and deep neural networks. Indones J Electr Eng Comput Sci 2021; 22: 1520. SOI:10.11591/ijeecs.v22.i3.pp1520-1528.

Acharya UR., Fujita H., Oh SL., Hagiwara Y., Tan JH., Adam M., Tan RS.. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 2019; 49(1): 16-27. DOI:10.1007/s10489-018-1179-1.

Byeon YH., Pan SB., Kwak KC.. Intelligent deep models based on scalograms of electrocardiogram signals for biometrics. Sensors 2019; 19: 935. DOI: 10.3390/s19040935.

Acharya UR., Fujita H., Oh SL., Raghavendra U., Tan JH., Adam M., Gertych A., Hagiwara Y.. Automated identification of shockable and non-shockable lifethreatening ventricular arrhythmias using convolutional neural network. Future Generation Computer Systems 2018; 79(3): 952-959. DOI: 10.1016/j.future.2017.08.039.

Gupta V., Mittal M.. QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. Journal of the Institution of Engineers (India): Series B 2019; 100(5): 489-497. DOI: 10.1007/s40031-

-00398-9.

Wang T., Lu C., Sun Y., Yang M., Liu C., Ou C.. Automatic ECG classification using continuous wavelet transform and convolutional neural network. Entropy (Basel) 2021; 23(1): 119. DOI: 10.3390/e23010119.

Ba Mahel AS., Harold N., Solieman H.. Arrhythmia classification using Alexnet model based on orthogonal leads and different time segments. 2022 Conf of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) 2022:1312-1315. DOI: 10.1109/ElConRus54750.2022.9755708.

Chawla NV., Bowyer KW., Hall LO., Kegelmeyer WP.. smote: synthetic minority over-sampling technique. J Artif Intell Res 2002; 16: 321-357.

Ozaltin O., Yeniay O.. A novel proposed CNN–SVM architecture for ECG scalograms classification. Soft Comput 2023; 27: 4639-4658. DOI: 10.1007/s00500-022-07729-x.

Li C., Zheng C., Tai C.. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 1995; 42(1): 21-28.

Krizhevsky A., Sutskever I., Hinton GE.. ImageNet classification with deep convolutional neural networks. Commun ACM 2012; 60(6): 84-90. DOI: 10.1145/3065386.

Downloads

Published

2024-03-27

How to Cite

Mamyrbayev , O., Oralbekova, D., Zhumagulova, S., & Azanbekov, E. (2024). CLASSIFICATION OF DANGEROUS ARRHYTHMIAS USING ECG SCALOGRAMS WITH DEEP CONVOLUTIONAL NEURAL NETWORKS. Journal of Problems in Computer Science and Information Technologies, 2(1). https://doi.org/10.26577/jpcsit2024020104