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USING PINN TO SOLVE EQUATIONS OF EQUIDISTRIBUTIONAL 
METHOD FOR CONSTRUCTING 2D STRUCTURED ADAPTED 

NUMERICAL GRIDS

Abstract. The Equidistributional method is a popular technique for constructing numerical grids in 
engineering and scientific simulations. It is based on the principle of equidistribution, which requires 
evenly spaced grid points to reduce numerical errors. However, traditional Equidistributional methods 
can become inefficient and inaccurate for complex geometries and boundary conditions. In this paper, 
we present a new approach for solving the Equidistributional method’s equations using physics-informed 
neural networks (PINN). PINN is a type of machine learning algorithm that has been shown to be effec-
tive for solving partial differential equations (PDEs). Our findings suggest that the use of PINN has the 
potential to significantly enhance the performance of the Equidistributional method for constructing 2D 
structured adapted numerical grids.
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1 Introduction

The Equidistributional method is a widely used 
technique for constructing numerical grids in engi-
neering and scientific simulations. It is based on the 
principle of equidistribution, which requires that the 
grid points be evenly spaced over the solution space 
to reduce numerical errors. However, the traditional 
Equidistributional method can become inefficient 
and inaccurate for complex geometries and bound-
ary conditions. [1-3]

The Equidistributional method has been applied 
to a wide range of problems in fields such as fluid 
dynamics, heat transfer, and electromagnetics, to 
name a few [4-6]. It has been shown to be particular-
ly effective for simulating systems with complex ge-
ometries and boundary conditions, where traditional 
grid generation techniques may not be suitable.

The Equidistributional method works by first 
defining a set of equidistributional criteria, which 
determine how the grid points should be spaced 
over the solution space. These criteria are then used 
to construct a set of partial differential equations 
(PDEs) that describe the distribution of the grid 
points. The PDEs are then solved to obtain the final 
grid structure.

Despite its many benefits, the Equidistributional 
method can become computationally expensive for 
complex problems, and may require a large number 
of iterations to find an optimal solution. In addition, 
the accuracy of the method may be limited by the 

choice of equidistributional criteria and the choice 
of solution method for the PDEs.

Recently, a new approach has emerged for solv-
ing partial differential equations (PDEs), known as 
physics-informed neural networks (PINN) [7-9]. 
PINN is a type of machine learning algorithm that 
has been shown to be particularly well suited for 
solving nonlinear and high-dimensional PDEs [10].

In this paper, we explore the use of PINN to 
solve the equations of the Equidistributional method 
for constructing 2D structured adapted numerical 
grids. Our goal is to investigate the potential benefits 
of using PINN to improve the accuracy, efficiency, 
and scalability of the Equidistributional method. To 
achieve this, we conduct numerical experiments to 
compare the results obtained using PINN to those 
obtained using traditional methods.

Neural networks have been widely used in vari-
ous fields of study, such as computer vision, speech 
recognition, and natural language processing. Re-
cently, there has been growing interest in apply-
ing neural networks to solve problems in physics, 
engineering, and other scientific disciplines. This 
has led to the development of a new class of neural 
networks, known as Physics-Informed Neural Net-
works (PINNs), which are designed to incorporate 
prior physical knowledge into the learning process.

In PINNs, the neural network is trained to ap-
proximate the solution of a partial differential 
equation (PDE) that describes a physical system. 
The network is trained by minimizing the differ-
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ence between the network predictions and the gov-
erning equations and initial/boundary conditions. 
This allows the network to capture the underlying 
physical behavior of the system and produce ac-
curate predictions, even in the presence of limited 
or noisy data.

PINNs have been successfully applied to a 
wide range of problems in physics, engineering, 
and other scientific disciplines, including solving 
forward and inverse problems, solving high-di-
mensional PDEs, and simulating complex physical 
systems. [11-15]

In this paper, we will provide an overview of 
the PINN framework and its applications to solv-
ing forward problem of grid construction involving 
partial differential equations. We will show how 
PINNs can be used to efficiently approximate the 
solution of complex physical systems and demon-
strate their effectiveness and robustness through a 
range of examples. Additionally, we will discuss 
the limitations of PINNs and avenues for future re-
search.

The rest of the paper is organized as follows: 
In Section 2 (Methods), we provide a brief over-
view of the Equidistributional method and PINN. 
In Section 3 (Results), we present our numerical 
experiments and results. Finally, in Section 4 (Dis-
cussion & Analysis), we conclude the paper with a 
discussion of our findings and future research di-
rections.

2 Methods 

The equidistribution method is a numerical tech-
nique for constructing two-dimensional structured 
adapted grids for solving partial differential equa-
tions (PDEs). The goal of the equidistribution meth-
od is to generate a grid that is well-suited for the 
solution of the PDE, by distributing the grid points 
evenly in domain with areas where the solution is 
rapidly changing and clustering the points and with 
areas where the solution is slowly changing. This re-
sults in a grid that is well-resolved in regions where 
the solution is rapidly changing and less resolved 
in regions where the solution is slowly changing, 
reducing the computational cost and increasing the 

accuracy of the solution of problems numerically 
solved further on the constructed grid.

The method based on the equidistribution 
principle, where the computational domain is di-
vided into a set of non-overlapping subdomains, 
and the goal is to distribute the grid points evenly 
in each subdomain. The principle is based on the 
idea that the grid points should be distributed in 
a way that reflects the underlying physics of the 
problem being solved. In areas where the solution 
of the PDE is rapidly changing, more grid points 
should be placed to capture the details of the so-
lution, while fewer grid points should be used in 
areas where the solution is slowly changing. This 
results in a grid that is well-suited for the solution 
of the PDE, with grid points distributed evenly in 
areas where the solution is rapidly changing and 
clustered in areas where the solution is slowly 
changing. The following formula describes the 
principle:

              (1)

there  is a square of quadrangular cell 
with vertices 

– the value of weight function at the center
 of this cell ;

.

The equidistribution method is based on the idea 
of equidistributing the metric tensor of the compu-
tational domain. The metric tensor is a measure of 
the local stretching of the computational domain 
and is used to control the distribution of grid points. 
In the equidistribution method, the metric tensor is 
computed based on the solution of the PDE, using a 
system of partial differential equations (PDEs) that 
equates the derivative of the metric tensor with the 
derivative of the solution.
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Figure 1 – Left – curvilinear coordinates q1 and q2; right – result of Equidistribution equations solved numerically

Mathematically, the equidistribution method in-
volves solving a system of PDEs in the form of the 
following two equations:

 (2)

where xa is the coordinates of grid nodes in compu-
tational domain, qa is the coordinates of the same 
nodes in sample domain, and  gij are the components 
of covariant tensor, a, i, j.

The solution of the governing equation and the 
metric tensor equation can be found iteratively, add-
ing the fake time component, thus, converting equa-
tions to the parabolic form. Convergence solution 
functions of such equations will be the solution of 
the equation (2). But iterative methods may take big 
amount of computing time, so we decided to imple-
ment novel approach of Physics Inferred Neural 
Networks.

The key idea behind using PINNs for grid gen-
eration is to leverage the physical constraints of the 
problem to guide the generation of the grid. In tra-
ditional grid generation methods, the grid is gener-
ated based on geometric considerations, such as the 
shape of the domain or the location of boundaries. 
In PINN-based grid generation, the grid is generated 
based on the solution of a PDE that describes the 
physical behavior of the system, with the PINN used 
to approximate the solution of the PDE.

The use of PINNs for grid generation involves 
modifying the loss function of the PINN to include a 

term that penalizes deviations from the desired grid 
structure. This can be accomplished by adding a reg-
ularization term to the loss function that encourages 
the grid points to be distributed in a specific way, 
such as evenly spaced or clustered in certain areas of 
the domain. By minimizing this combined loss func-
tion, the PINN can generate a grid that is well-suited 
for the solution of the PDE.

The equidistribution principle (2) can be used 
as a Physics-Informed Neural Network (PINN) loss 
function to generate structured numerical grids that 
are well-suited for the solution of partial differential 
equations (PDEs). The goal of using the equidistri-
bution principle as a loss function is to enforce the 
even distribution of grid points in areas of the com-
putational domain where the solution of the PDE 
is rapidly changing, while clustering grid points in 
areas where the solution is slowly changing. This re-
sults in a grid that is well-resolved in regions where 
the solution is rapidly changing and less resolved in 
regions where the solution is slowly changing, re-
ducing the computational cost and increasing the ac-
curacy of the solution.

To incorporate the equidistribution principle 
into the loss function of a PINN, the metric ten-
sor of the computational domain is used to control 
the distribution of grid points. The metric tensor is 
computed based on the solution of the PDE, using 
a system of PDEs that equates the derivative of the 
metric tensor with the derivative of the solution. The 
equidistribution principle is then enforced by adding 
a regularization term to the PINN loss function that 
encourages the metric tensor to be evenly distrib-
uted throughout the computational domain.

The loss function is defined as the sum of three 
terms:
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The residual term: This term measures the dif-
ference between the predictions of the PINN and the 
governing equations of the PDE.

The boundary condition term: This term mea-
sures the difference between the predictions of the 
PINN and the initial/boundary conditions of the 
PDE. 

The equidistribution term: This term measures 
the deviation of the metric tensor from the desired 
even distribution.

The equidistribution term is defined as the sum 
of the squared differences between the metric ten-
sor and the desired metric tensor, multiplied by a 
weighting factor (1). The desired metric tensor is 
chosen based on the specific problem being solved, 
and can be specified to enforce specific distribution 
patterns.

3 Results and Discussion

By implementing described methods some pre-
liminary results where obtained. The resulting 2D 
structured grid generated by the equidistribution 
method and PINN is shown in the picture 1. The 
grid is well-suited for the solution of the PDE, with 
grid points distributed evenly in areas where the 
solution is rapidly changing and clustered in areas 

where the solution is slowly changing. This results 
in a grid that is well-resolved in regions where the 
solution is rapidly changing and less resolved in 
regions where the solution is slowly changing, re-
ducing the computational cost and increasing the 
accuracy of the solution. Overall, the combina-
tion of the equidistribution method and PINN is a 
promising approach to generating structured nu-
merical grids that are well-suited for the solution of 
complex PDEs in physics, engineering, and other 
scientific disciplines.

As readers can see, the results of using the equi-
distribution method and PINN to generate a struc-
tured numerical grid for solving partial differential 
equations have some deformation in the border area. 
This can be due to a few factors such as the bound-
ary conditions, the complexity of the domain, and 
the resolution of the grid.

The boundary conditions are a critical aspect of 
the PDE solution, and the accuracy of the solution is 
dependent on how well the boundary conditions are 
represented in the grid. If the boundary conditions 
are not represented accurately in the grid, it can lead 
to deformations in the border area. Therefore, it is 
important to carefully choose the boundary condi-
tions and to ensure that they are properly incorpo-
rated into the PDE solution.

Figure 2 –  Resulting 2D grid constructed by equidistributional method using PINN: A) 2000 epochs; 
B) 5000 epochs; C) 10000 epochs; D) 19000 epochs



32

Using PINN to solve equations of equidistributional method for constructing 2d structured adapted numerical grids

Another factor that can lead to deformations in 
the border area is the complexity of the domain. If 
the domain has sharp corners or other irregulari-
ties, it can be challenging to generate a grid that 
accurately represents the domain while also being 
well-suited for the solution of the PDE. In such 
cases, it may be necessary to use more advanced 
numerical techniques or to simplify the domain to 
make grid generation and PDE solution more man-
ageable.

Finally, the resolution of the grid is also an im-
portant factor that can affect the accuracy of the so-
lution. If the grid is not dense enough, it may not 
capture the details of the solution in the border area, 
leading to deformations. On the other hand, if the 
grid is too dense, it may lead to unnecessary compu-
tational cost and longer computation time.

Overall, while the deformation in the border 
area may be a concern, it is important to keep in 
mind that the use of the equidistribution method and 
PINN is a promising approach to generating struc-
tured numerical grids that are well-suited for the 
solution of complex PDEs. With careful consider-
ation of the factors mentioned above, it is possible 
to achieve accurate and efficient PDE solutions with 
minimal deformations in the border area.

While the use of PINNs for grid generation is 
a relatively new and developing area of research, 
it has shown promise in generating structured nu-
merical grids that are well-suited for the solution of 
complex PDEs. As the research in this area contin-
ues to develop, it may become a viable alternative to 
traditional grid generation methods for certain types 
of problems.

4 Conclusion

In this paper, we have explored the use of the 
equidistribution method and Physics-Informed 
Neural Networks (PINNs) to generate structured 
numerical grids for solving partial differential equa-

tions (PDEs). The equidistribution method was used 
to generate a metric tensor that controls the distri-
bution of grid points in the computational domain, 
while the PINN was used to solve the PDE on the 
generated grid.

The results of our approach showed that the 
combination of the equidistribution method and 
PINN is a promising approach to generating struc-
tured numerical grids that are well-suited for the 
solution of complex PDEs. The generated grid was 
well-resolved in regions where the solution was rap-
idly changing and less resolved in regions where the 
solution was slowly changing, reducing the compu-
tational cost and increasing the accuracy of the so-
lution. However, there were some deformations in 
the border area, which could be due to a few factors 
such as the boundary conditions, the complexity of 
the domain, and the resolution of the grid.

In conclusion, the equidistribution method and 
PINN are powerful tools for generating structured 
numerical grids that are well-suited for the solution 
of PDEs. The combination of these techniques can 
lead to more accurate and efficient PDE solutions, 
with reduced computational cost and increased 
accuracy. However, careful consideration of the 
boundary conditions, domain complexity, and grid 
resolution is important to ensure the accuracy and 
reliability of the solution. As research in this area 
continues to develop, it is likely that the equidistri-
bution method and PINN will become increasingly 
popular for solving a wide range of complex PDEs 
in physics, engineering, and other scientific disci-
plines.
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