
© 2023 Al-Farabi Kazakh National University 23

IRSTI 50.41.25 https://doi.org/10.26577/JPCSIT.2023.v1.i1.03

D.V. Lebedev1,* , V.A. Perepelkin2

1Astana IT University, Astana, Kazakhstan
2Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, Russian Federation

*e-mail: danil.lebedev.0881@gmail.com

OPTIMIZING THE OPERATION OF FRAGMENTED
PROGRAMS BASED ON TRACES

Abstract. This article analyzes a fragmented algorithm to solve systems of linear algebraic equations
and optimize its operation. A sequential and parallel algorithm of the generalized minimal residuals
method is described. A fragmented algorithm has been developed and implemented in the LuNA lan-
guage. The LuNA system automatically constructs parallel programs, thereby allowing researchers not
to waste efforts on developing a parallel program, in particular, allows not to take into consideration the
communication processes between computer nodes and information about which nodes store distribut-
ed data, perform calculations. To optimize the operation of the fragmented program, the trace playback
module was used, using data from the previous operation of the program to bypass additional costs in
the further construction of parallel programs. The program was tested on the cluster of the Information
and Computing Center of Novosibirsk State University and the results were analyzed. With the help of
trace playback, at best, an acceleration of 27 times was obtained.

Key words: high-perfomance computing, LuNA, fragmented programming, parallel computing.

1 Introduction

High-performance computing plays a very im-
portant role in modern science. The development
of high-performance computing allows scientists
to solve scientific and applied problems in various
fields. Solving such problems in large cell count-
ing grids requires large resources, including time
costs. The use of supercomputers can significantly
speed up problem solving when using numerical
methods. Technologies such as OpenMP [1,2], MPI
[3,4], OpenCL [5], CUDA [6,7] and fragmentary
programming [4,8] are used to speed up scientific
calculations.

In the field of solving scientific numerical mod-
eling problems using a supercomputer, there is a
problem of constructing a parallel algorithm that
effectively solves a given applied numerical algo-
rithm. The word efficiency here refers to the execu-
tion time of a parallel program, the costs of using
memory, the balance of the load on the resources of
a given solver, and much more. Achieving the effec-
tive performance of a parallel program is a difficult
task for the user, that is, the programmer. For this
purpose, the user must take into consideration the
features of the incoming data, the application task,
the calculator, as well as balance the load between
the calculation nodes between the time, perform
communications along with the calculation. The
difficulty of creating such a program is especially

evident when the computing is not homogeneous,
but heterogeneous (containing GPUs or other types
of computing.

LuNA is a fragmentary programming system de-
signed to automate the process of implementing nu-
merical modeling problems on a supercomputer. In
this system, the above properties are automated. In
[4], one can see how the authors used the LuNA sys-
tem for the modeling problem, and in [9], examples
of using dense linear algebra in problems are shown.
But in these works, the resulting acceleration is less
than the acceleration of a parallel program using the
MPI library. In [10], steps were taken to optimize
the fragmented program. In the following work [11],
traces were used for optimization. In the traces, you
can store information about the construction of the
program, which will optimize the design of the pro-
gram in the following launches.

In this paper, the development of a fragmented
algorithm and the optimization of a fragmented
program were considered. The article discusses the
problems of fragmented programming and the opti-
mization option. To solve the problem of modeling
the movement of oil, a linear solver and its parallel
algorithm are considered.

2 Method and sequential algorithm

This article discusses an algorithm for solving
systems of linear algebraic equations (SLAE) with

ISSN: 2958-0846; eISSN: 2958-0854 Journal of Problems in Computer Science and Information Technologies №1(1)2023 https://jpcsip.kaznu.kz

https://doi.org/10.26577/JPCSIT.2023.v1.i1.03
https://orcid.org/0000-0002-5186-6483
https://orcid.org/0000-0002-6998-4525

24

Optimizing the operation of fragmented programs based on traces

large sparse matrices. There are many methods for
solving SLAE, but not all of them are suitable for
systems with sparse matrices. For example, direct
methods like the Gauss method, LU decomposition,
should not be used for systems with large sparse
matrices, since when our system is transformed,
an overflow of the matrix may occur. Simple itera-
tive methods, like the method of simple iteration,
Jacobi, Seidel, should also not be used for systems
with large matrices, since these methods converge
slowly. For such cases, Krylov-type methods are
used. The most widely used of them is the method of
generalized minimal residuals (GMRES) [12]. This
method is suitable for SLAE with large sparse and
asymmetric matrices.

The method consists of several steps. The meth-
od relies on Arnoldi iterations to find a vector mini-
mizing the discrepancy from the Krylov subspace.
The Arnoldi iteration algorithm can be represented
as follows:

 ,

As a result of this step, we get the following
output data: Vm – orthonormal basis of Krylov
subspace, Hm – an upper Hessenberg matrix
whose elements are equal to the orthogonalization
coefficients. The approximate solution is as
follows:

where the vector ym can be found as a solution to
a linear least squares problem of size ,

where :

Next, the method suggests that the Hessenberg
matrix Hm be reduced to a triangular form using
Givens rotations. After that , you can easily solve
the minimization problem in the following form:

3 Fragmented programming

LuNA (Language for Numerical Algorithms –
a fragmentary programming system [13]. It aims to
automate the implementation of numerical model-
ing problems on a supercomputer. In it, the appli-
cation program is composed of a set of data frag-
ments (DF) and computational fragments (CF), and
the fragmented structure of the program is preserved
during the calculations. This method of paralleliza-
tion allows you to program at a higher level and get
rid of some of the difficulties of system program-
ming. The description of the fragmentary algorithm
is platform-independent, and settings for a particular
calculator are provided by the LuNA runtime sys-
tem.

In the LuNA system, the user describes the
calculation algorithm without binding to resources
within the datalow-model limits. Such a descrip-
tion is called a fragmentary algorithm (FA). The
distinguishing property of FA is its data immuta-
bility, i.e., one-time ownership, and the absence of
reverse effects in the computational modules that
implement the calculations. The implementation of
the FA implies the assignment of the DF and CF
to the computing resources and the choice of the
order of execution of the CF in such a way that it
does not contradict the information dependencies.
Figure 1 describes how FA works. What we can
see from there is that the outgoing DFs are calcu-
lated from the incoming DFs until all CFs are com-
pleted [14].

25

D.V. Lebedev, V.A. Perepelkin

Figure 1 – Description of FA, blue circles represent DF, and red rectangles represent CF

The LuNA system can run a fragmented pro-
gram in parallel in multithreaded mode in common
memory conditions and in multiprocessor or multi-
threaded modes in distributed memory computing.
The goal of this project is to automate the creation
of efficient parallel programs that implement some
kind of numerical algorithms for supercomputers
[13].

4 Fragmented algorithm

The parallelization resource is various matrix
and vector operations within the iteration of the
method. There is an obvious data dependency be-
tween different iterations, so it will not be possible
to perform several iterations on different processes
in parallel. Instead, an approach was chosen with the
distribution of calculations within each iteration.

A fragmented algorithm was developed based
on a parallel algorithm. Therefore, first we need to
focus on the parallelization of the algorithm. The
main calculations of the GMRES method fall on
matrix-vector algorithms. For example, the next step

means matrix multiplication by vector and vector
addition. These operations are easily paralleled with
the distribution of data across processes.

The parallel algorithm was implemented using
the MPI standard.

Further, a fragmented algorithm was developed
based on a parallel algorithm and implemented in
the LuNA system. The operation of a fragmented
algorithm can be characterized by the operation of a
fragmented calculation of the following part of the
method:

To find the scalar product, here the vectors
wj and νj are divided by n the number of DF.
Then, for each pair of two vectors, separate CFs
are performed, as a result of which temporary
DF is generated. A separate CF collects tempo-
rary DFs, performs operations on them and gen-
erates a DF with a coefficient hij at the output.
DFs that will no longer be used can be erased
from memory.

26

Optimizing the operation of fragmented programs based on traces

Figure 2 – Data decomposition during parallel execution of the algorithm

5 Numerical experiments and results

A model describing the motion of a multiphase
multicomponent liquid in a porous medium was
chosen for numerical experiments. This article is a
continuation of the work [15]. For a more detailed
acquaintance with the mathematical model and the
results of parallel execution of the algorithm, you
can refer to this article.

Studies that have been conducted up to this
time have shown a noticeable slowdown in the op-
eration of the fragmented algorithm program with
an increase in the number of processes [15]. This
was explained by a lot of additional costs when de-
signing a parallel program. As it was written ear-
lier, the fragmented programming system finds the
relationships in the DF and CF and automatically
constructs a parallel program. Along with this, it
takes into account which CF is performed after
which CF, which DF should serve as input and
output data, in which computing nodes they should

be located and what communications should occur
between the nodes simultaneously. The task itself
is NP complete and it takes quite a lot of time at
this stage. And with the increase in the number of
parallel MPI processes, the options for designing
parallel programs increases significantly. To get
rid of these costs, a track playback module was de-
veloped. After a single construction and execution
of a parallel program, files with traces are gener-
ated, in which information about the locations and
movements of DF and CF is recorded. Using this
data in the next construction of a parallel program
will speed up the work.

The program was tested on different sizes of
the matrix of a system of linear equations. The tests
were conducted on a cluster of the Information and
Computing Center of Novosibirsk State University,
on one node of which there are two 6-core Intel
Xeon X5670 processors with a clock frequency of
2932 MHz and 24 GB of RAM. The results are dis-
played in the following table.

Table 1 – Comparative results of the program

Size of matrix
А

600x600 1200x1200 2400x2400 4800x4800

Number of
processes

without
trace

with trace without
trace

with trace without trace with trace without trace with trace

2 84.21 7.925 312.917 8.366 1159.906 105.401 5527.718 1517.654

4 81.646 4.367 312.031 25.417 1321.223 185.1 6467.069 3078.793

8 120.273 4.404 490.472 31.84 2009.271 309.636 10585.324 5061.385

27

D.V. Lebedev, V.A. Perepelkin

The table shows the time in seconds. On each size
of the matrix, you can see two columns with the results.
The first is the usual execution of a fragmented program,
the second is the execution of a fragmented program
designed with the trace playback. From the table you can
see that on small sizes, the trace playback allows you to
get a very good acceleration compared to a conventional
fragmented program. For example, an acceleration of 27
times was obtained on a 600x600 matrix. But with an
increase in size, this acceleration drops to two times on
a matrix of size 4800x4800. This can be attributed to the
reality that on small sizes, the main time costs are spent
on the previously specified loads. The larger the size, the
longer the runtime of the program, without considering
the processes that are stored in the traces.

6 Conclusion

In this paper, a fragmented algorithm for solv-
ing the problem of modeling fluid movement was

considered. The work is a continuation of the work
previously carried out by the research group. Par-
allel and fragmented algorithms of the method of
generalized minimal residuals were developed. The
fragmented program was realized in the LuNA sys-
tem. Writing a fragmented program allows develop-
ers not to think about the system part of parallel pro-
grams, but it was found that a fragmented program
runs slower than a parallel program on MPI. Tests
were carried out using the track playback module,
which allowed in some cases to get an acceleration
of 27 times.

Acknowledgments

This research was supported by the Grant No.
AP14871644 “ Development of intelligent and
high-performance models for solving enhanced oil
recovery (EOR) problems” of Kazakhstan Republic
National Engineering Academy.

References

1. Iryanto and P. H. Gunawan, “An OpenMP parallel godunov scheme for 1D two phase oil displacement problem,” 2017 5th
International Conference on Information and Communication Technology (ICoIC7), Melaka, Malaysia, 2017, pp. 1-5, doi: 10.1109/
ICoICT.2017.8074664.

2. L.F. Werneck, M.Medeiros de Freitas, H.Guaraldi da Silva Jr, Grazione de Souza, H.P. Amaral Souto. “An OpenMP Paral-
lel Implementation for Numerical Simulation of Gas Reservoirs Using Intel Xeon Phi Coprocessor An OpenMP Parallel Implemen-
tation for Numerical Simulation of Gas Reservoirs.” Proceedings of the XXXVII Iberian Latin-American Congress on Computational
Methods in Engineering Suzana Moreira Avila (Editor), ABMEC, Brasılia, DF, Brazil, November 6-9, 2016.

3. Sreekanth Pannala, Ed F. D’Azevedo, Madhava Syamlal, Thomas O’Brien. “Hybrid (OpenMP and MPI) Parallelization
of MFIX: A Multiphase CFD Code for Modeling Fluidized Beds.Conference.” Proceedings of the 2003 ACM Symposium on Applied
Computing (SAC), March 9-12, 2003, Melbourne, FL, USA.

4. Akhmed-Zaki, Lebedev, Perepelkin. “Implementation of a three dimensional three-phase fluid flow (“oil–water–gas”)
numerical model in LuNA fragmented programming system.” The Journal of Supercomputing. 2016

5. Khramchenkov, E., & Khramchenkov, M. “Numerical Model of Two-Phase Flow in Dissolvable Porous Media and Simu-
lation of Reservoir Acidizing.” Natural Resources Research, 27(4), 531–537.

6. Zaza, A., Awotunde, A. A., Fairag, F. A., & Al-Mouhamed, M. A. “A CUDA based parallel multi-phase oil reservoir
simulator.” Computer Physics Communications, 206, 2–16.

7. McClure, J. E., Prins, J. F., & Miller, C. T. “A novel heterogeneous algorithm to simulate multiphase flow in porous media
on multicore CPU–GPU systems.” Computer Physics Communications, 185(7), 1865–1874.

8.	 Malyshkin V.E., Perepelkin V.A. “LuNA Fragmented Programming System, Main Functions and Peculiarities of Run-Time Sub-
system.” In the Proceedings of the 11-th Conference on Parallel Computing Technologis, LNCS, vol. 6873, Springer, 2011. –– pp. 53–61.

Belyaev, N., Perepelkin, V. “High-Efficiency Specialized Support for Dense Linear Algebra Arithmetic in LuNA System.”
In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer,
Cham. https://doi.org/10.1007/978-3-030-86359-3_11

Malyshkin, V., Akhmed-Zaki, D. & Perepelkin, V. “Parallel programs execution optimization using behavior control in LuNA
system.” J Supercomput 77, 9771–9779 (2021). https://doi.org/10.1007/s11227-021-03654-2

Malyshkin, V., Perepelkin, V. “Trace-Based Optimization of Fragmented Programs Execution in LuNA System.” In: Malysh-
kin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham.
https://doi.org/10.1007/978-3-030-86359-3_1

Saad Y, Schults M H. “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems [J].” SIAM
J Sci Statist Comput, 1986, 7: 856-869.

Kireev, S. Malyshkin, V., Fujita, H. “The LuNA Library of Parallel Numerical Fragmented Subroutines.” Lecture Notes in
Computer Science. – 2011. – Vol. 6873. – P. 290 –301.

Valkovsky, V.A., Malyshkin, and V.E. Synthesis of parallel programs and system on the basis of computational models. Novo-
sibirsk: Nauka, 1988, 128 pp. (In Russian)

N. Kassymbek, B. Matkerim, D. Lebedev, T. Imankulov, D. Akhmed-Zaki. “GMRES Based Numerical Simulation of Multi-
component Multiphase Flow in Porous Media on LuNA Fragmented Programming System,” ECMOR XVII, Sep 2020, Volume 2020,
p.1 – 10. https://doi.org/10.3997/2214-4609.202035201

