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OPTIMIZING THE OPERATION OF FRAGMENTED 
PROGRAMS BASED ON TRACES

Abstract. This article analyzes a fragmented algorithm to solve systems of linear algebraic equations 
and optimize its operation. A sequential and parallel algorithm of the generalized minimal residuals 
method is described. A fragmented algorithm has been developed and implemented in the LuNA lan-
guage. The LuNA system automatically constructs parallel programs, thereby allowing researchers not 
to waste efforts on developing a parallel program, in particular, allows not to take into consideration the 
communication processes between computer nodes and information about which nodes store distribut-
ed data, perform calculations. To optimize the operation of the fragmented program, the trace playback 
module was used, using data from the previous operation of the program to bypass additional costs in 
the further construction of parallel programs. The program was tested on the cluster of the Information 
and Computing Center of Novosibirsk State University and the results were analyzed. With the help of 
trace playback, at best, an acceleration of 27 times was obtained.
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1 Introduction

High-performance computing plays a very im-
portant role in modern science. The development 
of high-performance computing allows scientists 
to solve scientific and applied problems in various 
fields. Solving such problems in large cell count-
ing grids requires large resources, including time 
costs. The use of supercomputers can significantly 
speed up problem solving when using numerical 
methods. Technologies such as OpenMP [1,2], MPI 
[3,4], OpenCL [5], CUDA [6,7] and fragmentary 
programming [4,8] are used to speed up scientific 
calculations.

In the field of solving scientific numerical mod-
eling problems using a supercomputer, there is a 
problem of constructing a parallel algorithm that 
effectively solves a given applied numerical algo-
rithm. The word efficiency here refers to the execu-
tion time of a parallel program, the costs of using 
memory, the balance of the load on the resources of 
a given solver, and much more. Achieving the effec-
tive performance of a parallel program is a difficult 
task for the user, that is, the programmer. For this 
purpose, the user must take into consideration the 
features of the incoming data, the application task, 
the calculator, as well as balance the load between 
the calculation nodes between the time, perform 
communications along with the calculation. The 
difficulty of creating such a program is especially 

evident when the computing is not homogeneous, 
but heterogeneous (containing GPUs or other types 
of computing. 

LuNA is a fragmentary programming system de-
signed to automate the process of implementing nu-
merical modeling problems on a supercomputer. In 
this system, the above properties are automated. In 
[4], one can see how the authors used the LuNA sys-
tem for the modeling problem, and in [9], examples 
of using dense linear algebra in problems are shown. 
But in these works, the resulting acceleration is less 
than the acceleration of a parallel program using the 
MPI library. In [10], steps were taken to optimize 
the fragmented program. In the following work [11], 
traces were used for optimization. In the traces, you 
can store information about the construction of the 
program, which will optimize the design of the pro-
gram in the following launches.

In this paper, the development of a fragmented 
algorithm and the optimization of a fragmented 
program were considered. The article discusses the 
problems of fragmented programming and the opti-
mization option. To solve the problem of modeling 
the movement of oil, a linear solver and its parallel 
algorithm are considered. 

2 Method and sequential algorithm

This article discusses an algorithm for solving 
systems of linear algebraic equations (SLAE) with 
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large sparse matrices. There are many methods for 
solving SLAE, but not all of them are suitable for 
systems with sparse matrices. For example, direct 
methods like the Gauss method, LU decomposition, 
should not be used for systems with large sparse 
matrices, since when our system is transformed, 
an overflow of the matrix may occur. Simple itera-
tive methods, like the method of simple iteration, 
Jacobi, Seidel, should also not be used for systems 
with large matrices, since these methods converge 
slowly. For such cases, Krylov-type methods are 
used. The most widely used of them is the method of 
generalized minimal residuals (GMRES) [12]. This 
method is suitable for SLAE with large sparse and 
asymmetric matrices.

The method consists of several steps. The meth-
od relies on Arnoldi iterations to find a vector mini-
mizing the discrepancy from the Krylov subspace. 
The Arnoldi iteration algorithm can be represented 
as follows:

  ,   

As a result of this step, we get the following 
output data: Vm – orthonormal basis of Krylov 
subspace, Hm – an upper Hessenberg matrix 
whose elements are equal to the orthogonalization 
coefficients. The approximate solution is as 
follows:

where the vector ym can be found as a solution to 
a linear least squares problem of size ,  

where  :

Next, the method suggests that the Hessenberg 
matrix Hm be reduced to a triangular form using 
Givens rotations. After that , you can easily solve 
the minimization problem in the following form:

3 Fragmented programming

LuNA (Language for Numerical Algorithms – 
a fragmentary programming system [13]. It aims to 
automate the implementation of numerical model-
ing problems on a supercomputer. In it, the appli-
cation program is composed of a set of data frag-
ments (DF) and computational fragments (CF), and 
the fragmented structure of the program is preserved 
during the calculations. This method of paralleliza-
tion allows you to program at a higher level and get 
rid of some of the difficulties of system program-
ming. The description of the fragmentary algorithm 
is platform-independent, and settings for a particular 
calculator are provided by the LuNA runtime sys-
tem.

In the LuNA system, the user describes the 
calculation algorithm without binding to resources 
within the datalow-model limits. Such a descrip-
tion is called a fragmentary algorithm (FA). The 
distinguishing property of FA is its data immuta-
bility, i.e., one-time ownership, and the absence of 
reverse effects in the computational modules that 
implement the calculations. The implementation of 
the FA implies the assignment of the DF and CF 
to the computing resources and the choice of the 
order of execution of the CF in such a way that it 
does not contradict the information dependencies. 
Figure 1 describes how FA works. What we can 
see from there is that the outgoing DFs are calcu-
lated from the incoming DFs until all CFs are com-
pleted [14].
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Figure 1 – Description of FA, blue circles represent DF, and red rectangles represent CF

The LuNA system can run a fragmented pro-
gram in parallel in multithreaded mode in common 
memory conditions and in multiprocessor or multi-
threaded modes in distributed memory computing. 
The goal of this project is to automate the creation 
of efficient parallel programs that implement some 
kind of numerical algorithms for supercomputers 
[13].

4 Fragmented algorithm

The parallelization resource is various matrix 
and vector operations within the iteration of the 
method. There is an obvious data dependency be-
tween different iterations, so it will not be possible 
to perform several iterations on different processes 
in parallel. Instead, an approach was chosen with the 
distribution of calculations within each iteration.

A fragmented algorithm was developed based 
on a parallel algorithm. Therefore, first we need to 
focus on the parallelization of the algorithm. The 
main calculations of the GMRES method fall on 
matrix-vector algorithms. For example, the next step 

means matrix multiplication by vector and vector 
addition. These operations are easily paralleled with 
the distribution of data across processes.

The parallel algorithm was implemented using 
the MPI standard.

Further, a fragmented algorithm was developed 
based on a parallel algorithm and implemented in 
the LuNA system. The operation of a fragmented 
algorithm can be characterized by the operation of a 
fragmented calculation of the following part of the 
method:

To find the scalar product, here the vectors  
wj and νj are divided by n the number of DF. 
Then, for each pair of two vectors, separate CFs 
are performed, as a result of which temporary 
DF is generated. A separate CF collects tempo-
rary DFs, performs operations on them and gen-
erates a DF with a coefficient hij at the output. 
DFs that will no longer be used can be erased 
from memory.
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Figure 2 – Data decomposition during parallel execution of the algorithm

5 Numerical experiments and results

A model describing the motion of a multiphase 
multicomponent liquid in a porous medium was 
chosen for numerical experiments. This article is a 
continuation of the work [15]. For a more detailed 
acquaintance with the mathematical model and the 
results of parallel execution of the algorithm, you 
can refer to this article.

Studies that have been conducted up to this 
time have shown a noticeable slowdown in the op-
eration of the fragmented algorithm program with 
an increase in the number of processes [15]. This 
was explained by a lot of additional costs when de-
signing a parallel program. As it was written ear-
lier, the fragmented programming system finds the 
relationships in the DF and CF and automatically 
constructs a parallel program. Along with this, it 
takes into account which CF is performed after 
which CF, which DF should serve as input and 
output data, in which computing nodes they should 

be located and what communications should occur 
between the nodes simultaneously. The task itself 
is NP complete and it takes quite a lot of time at 
this stage. And with the increase in the number of 
parallel MPI processes, the options for designing 
parallel programs increases significantly. To get 
rid of these costs, a track playback module was de-
veloped. After a single construction and execution 
of a parallel program, files with traces are gener-
ated, in which information about the locations and 
movements of DF and CF is recorded. Using this 
data in the next construction of a parallel program 
will speed up the work.

The program was tested on different sizes of 
the matrix of a system of linear equations. The tests 
were conducted on a cluster of the Information and 
Computing Center of Novosibirsk State University, 
on one node of which there are two 6-core Intel 
Xeon X5670 processors with a clock frequency of 
2932 MHz and 24 GB of RAM. The results are dis-
played in the following table.

Table 1 – Comparative results of the program

Size of matrix 
А

600x600 1200x1200 2400x2400 4800x4800

Number of 
processes

without 
trace

with trace without 
trace

with trace without trace with trace without trace with trace

2 84.21 7.925 312.917 8.366 1159.906 105.401 5527.718 1517.654

4 81.646 4.367 312.031 25.417 1321.223 185.1 6467.069 3078.793

8 120.273 4.404 490.472 31.84 2009.271 309.636 10585.324 5061.385
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The table shows the time in seconds. On each size 
of the matrix, you can see two columns with the results. 
The first is the usual execution of a fragmented program, 
the second is the execution of a fragmented program 
designed with the trace playback. From the table you can 
see that on small sizes, the trace playback allows you to 
get a very good acceleration compared to a conventional 
fragmented program. For example, an acceleration of 27 
times was obtained on a 600x600 matrix. But with an 
increase in size, this acceleration drops to two times on 
a matrix of size 4800x4800. This can be attributed to the 
reality that on small sizes, the main time costs are spent 
on the previously specified loads. The larger the size, the 
longer the runtime of the program, without considering 
the processes that are stored in the traces. 

6 Conclusion

In this paper, a fragmented algorithm for solv-
ing the problem of modeling fluid movement was 

considered. The work is a continuation of the work 
previously carried out by the research group. Par-
allel and fragmented algorithms of the method of 
generalized minimal residuals were developed. The 
fragmented program was realized in the LuNA sys-
tem. Writing a fragmented program allows develop-
ers not to think about the system part of parallel pro-
grams, but it was found that a fragmented program 
runs slower than a parallel program on MPI. Tests 
were carried out using the track playback module, 
which allowed in some cases to get an acceleration 
of 27 times.
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