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Abstract. In recent years, the integration of modern information technologies has become pervasive across 
various industries, and the oil sector is no exception. The utilization of high-performance computing technologies, 
artificial intelligence algorithms, and advanced methods for data collection, processing, and storage has been 
instrumental in addressing challenges related to enhancing oil recovery. While deep learning has demonstrated 
significant advancements in diverse applications, its application to solving partial differential equations has 
recently gained prominence. A noteworthy strategy entails substituting conventional numerical techniques with 
neural networks that approximate solutions to partial differential equations. Physics-informed neural networks 
(PINNs) represent a significant development in this domain by incorporating partial differential equations directly 
within the loss function of neural network through automatic differentiation. This study presents a numerical 
algorithm and a PINNs to solve the one-dimensional equation describing the distribution of water and oil pressure 
within the context of the Buckley-Leverett mathematical model. The obtained results include the numerical 
solution and predictions derived from the PINN neural network to solve the pressure distribution. The insights 
gained from the comparative analysis underscore the promising role of PINNs as a robust and competitive tool for 
addressing intricate problems within the realm of complex fluid dynamics.

Key words: Enhanced Oil Recovery, Physics-Informed Neural Networks (PINNs), Deep Learning, Numerical 
Method.

1 Introduction

In the last decade and a half, deep learning, 
represented by deep neural networks, has 
demonstrated significant effectiveness in diverse 
applications like computer vision and natural 
language processing [1]. Although its success in 
these areas, the widespread adoption of deep 
learning in scientific computing has been limited. 
Nevertheless, a contemporary trend is evolving, 
centering around the utilization of deep learning to 
address partial differential equations [2]. In this 
strategy, conventional methods of numerical 
discretization are substituted with neural networks 
that provide approximations for solving differential 
equations.

Achieving an approximate solution to 
differential equations through deep learning 
techniques involves a crucial step: restricting the 
network to minimize the residual of partial 
differential equations. Various methods have been 
suggested for this objective. In contrast to 

traditional grid-oriented techniques like finite 
difference methods and finite element methods, 
deep learning presents a mesh-free alternative, 
capitalizing on automatic differentiation [3]. Some 
of these approaches may be applicable only to 
specific categories of issues, such as input domains 
like images [4] or parabolic partial differential 
equations [5].

The first glimpses of the prospect of using 
structured prior information to create data-efficient 
and physics-aware machine learning have already 
been demonstrated in recent research [6]. In that 
work, the authors employed Gaussian process
regression to develop functional representations 
adapted to a given linear operator, accurately 
deriving solutions. Additionally, they provided
uncertainty assessments for diverse model 
scenarios in the realm of mathematical physics. 
Subsequent research [7, 8] has suggested 
expansions to nonlinear issues within the domains 
of logical inference and identifying systems. In the 
light of the versatility and mathematical 
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sophistication of Gaussian processes in capturing 
prior information, dealing with nonlinear 
challenges imposes two significant limitations.

Physics-Informed Neural Networks are 
described in works [9-13], where the use of these 
networks adheres to the laws of physics (for 
problems described by differential equations). In 
[9], the application of PINNs to classical fluid 
mechanics and quantum mechanics problems is 
discussed.

In [10, 11], the authors introduce a deep 
learning approach called physics-informed neural 
networks for quantitative uncertainty assessment in 
ordinary differential equation systems. In 2020, this 
method started to be applied for mapping heart 
activations [12] and evaluating fluid conductivity 
governed by Darcy's law [13]. The results of these 
works demonstrate that applying PINNs can yield 
results comparable to those of physical 
models.

The early stages of developing Physically 
Informed Neural Networks primarily concentrated 
on comprehending and enhancing their training 
dynamics. Initially, there was a significant 
challenge related to the disparate convergence rates 
among various elements of the loss function, a
pivotal aspect in neural network training. This 
discrepancy often resulted in scenarios where the 
network prioritized learning the physical dynamics 
at the expense of fitting the data or vice versa. In 
[14], the authors contribute to this comprehension 
by conducting an wide-ranging survey of literature
on PINNs, elucidating their characterization, 
advantages, and disadvantages. Various PINN 
variants, including physics-constrained neural 
networks (PCNN), variational hp-VPINN, and 
conservative PINN (CPINN), are discussed, 
highlighting the diversity within the field. The 
seminal work in [15] delves deep into this 
challenge, providing crucial insights into the 
concepts of training PINNs. It underscores the 
necessity for a balanced approach that ensures 
equitable representation of both physical laws and 
data throughout the learning process. This 
understanding played a pivotal role in guiding 
subsequent advancements in the field.

Establishing a robust theoretical foundation, 
particularly concerning error analysis, is a crucial 
aspect of the development and utilization of 
physics-informed neural networks. Linear parabolic 
differential equations are commonly employed for 
modeling time-dependent phenomena such as heat 

transfer and diffusion processes. The error analysis 
outlined in [16] holds significance as it provides 
valuable insights into the precision and 
dependability of PINNs when employed in the 
context of these equations. This study 
systematically investigates various error sources, 
including discretization, approximation, and 
algorithmic errors, offering benchmarks to assess 
the efficacy of PINNs. A noteworthy contribution 
of this analysis lies in addressing the curse of 
dimensionality, a challenge prevalent in high-
dimensional spaces where the space volume 
escalates exponentially with the number of 
dimensions. Traditionally, this curse poses 
computational and analytical challenges in 
numerical methods. The findings presented in [16] 
illustrate that PINNs, equipped to handle high-
dimensional data while incorporating physical 
laws, adeptly surmount this challenge. This error 
analysis not only enriches the comprehension of 
PINNs' capabilities but also instills confidence in 
their application to intricate, high-dimensional 
issues.

2 Physics-Informed Neural Networks

Automatic differentiation. The method of 
automatic differentiation for calculating derivatives 
of network outputs relative to network inputs is 
considered. Considering that neural networks are 
compositional functions, automatic differentiation 
repeatedly applies the chain rule to calculate 
derivatives. Automatic differentiation consists of 
two steps: a forward propagation to compute the 
values of all variables and a subsequent backward 
propagation to calculate the derivatives.

The DeepXDE library was explored to 
implement a physics-informed neural network. 
DeepXDE is a deep learning library on top of 
TensorFlow that supports many features: 
construction of primitive and complex geometries, 
support for multiple boundary conditions for partial 
differential equations, 6 sample filling methods, 
ease of saving and loading the model during 
training.

The algorithm for solving differential equations 
using PINNs consists of four stages:

1. Construction of a neural network u(x; θ) with 
parameters θ;

2. Specify two training sets: for the partial 
differential equation and the boundary/initial 
conditions that are built into the loss function;



27

Y. Kenzhebek, A. Amangeldiyev

3. Determination of the loss function by 
aggregating the weighted 𝐿𝐿𝐿𝐿2 norms as residuals
from partial differential equations and boundary 
conditions;

4. Training a network to determine the optimal
parameter θ* through the reduction of the loss 
function.

3 PINNs for modeling the pressure 
distribution in the Buckley-Leverett model

A numerical algorithm has been developed to 
solve the equation for distribution of pressure from 
the Buckley–Leverett mathematical model. To 
numerically solve the pressure equation, the Jacobi 
iterative method was used.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�⃗�𝑑𝑑𝑑𝑤𝑤𝑤𝑤) +  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�⃗�𝑑𝑑𝑑𝑜𝑜𝑜𝑜) = 0,               (1)

where �⃗�𝑑𝑑𝑑𝑤𝑤𝑤𝑤, �⃗�𝑑𝑑𝑑𝑜𝑜𝑜𝑜 – fluid flow speed, which is expressed 
by the following Darcy’s law:

�⃗�𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = −𝐾𝐾𝐾𝐾0
𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠)
𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖

∇𝑃𝑃𝑃𝑃, 𝑑𝑑𝑑𝑑 = 𝑤𝑤𝑤𝑤, 𝑜𝑜𝑜𝑜,               (2)

𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖(𝑠𝑠𝑠𝑠),𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 – relative phase permeabilities and 
viscosities of the water and oil phases, respectively, 
𝐾𝐾𝐾𝐾0 – absolute permeability. Substituting equation 
(2) to equation (1), we obtain a one-dimensional 
equation for pressure:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
� = 0,                     (3)

where Mx is denoted as follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (−𝐾𝐾𝐾𝐾0
𝑓𝑓𝑓𝑓1(𝑠𝑠𝑠𝑠)
𝜇𝜇𝜇𝜇1

) + (−𝐾𝐾𝐾𝐾0
𝑓𝑓𝑓𝑓2(𝑠𝑠𝑠𝑠)
𝜇𝜇𝜇𝜇2

).

A neural network PINN was built to solve the 
one-dimensional pressure equation from the 
Buckley-Leverett mathematical model. Figure 1 
shows the PINN architecture for solving this 
problem:

Figure 1 – PINN neural network architecture for pressure equation

In PINN, an initial step involves constructing a 
neural network, denoted as P(x; θ), to serve as a 
substitute for the solution p(x). This neural network 
takes an input x and produces a vector with 
dimensions identical to p. Here, θ = {W, b} 
represents the collection of all weight matrices and 
bias vectors within the neural network P. An 
advantageous feature of PINN, particularly in 
opting for neural networks to approximate p, lies in 

the ability to compute derivatives of P concerning 
input x. This is achieved through the chain rule for 
differentiating compositions of functions using 
automatic differentiation (AD), conveniently 
integrated into machine learning packages.

The loss function is considered, defined as a 
weighted summation of the 𝐿𝐿𝐿𝐿2 norm of residuals 
from the equation and boundary conditions:
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𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃;𝑇𝑇𝑇𝑇) = 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜃𝜃𝜃𝜃;𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� + 𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏(𝜃𝜃𝜃𝜃;𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏).

This loss function will be used for model training 
so that it fits the pressure equation for the oil 
displacement problem and satisfies the boundary 
conditions.

Here 𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 is the loss function for the boundary 
conditions. This is used to ensure that the model 
satisfies the boundary conditions.

𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 = 1
𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏
∑ (𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖=1 (p(𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) − 𝑝𝑝𝑝𝑝)2|𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖,

where 𝑁𝑁𝑁𝑁𝑏𝑏𝑏𝑏 is the number of points on the border, 
and x_i are the coordinates of these points.

Whereas 𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the loss function for the partial 
differential equation. This is used to allow the 
model to approximate the equation. For the 
pressure equation from the Buckley-Leverett model 
is defined as 𝐿𝐿𝐿𝐿2 norm between the left and right 
sides of the equation, that is, the discrepancy of the 
equations. As can be seen from the loss function, 
labeled data is not used here, that is, the physical 
limitations of the equation under consideration are 
considered.

𝐿𝐿𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

∑ � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
��
2𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑗𝑗𝑗𝑗=1 |𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗,

where 𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the number of points at which the 
partial differential equation is applied.

A fully connected neural network was used, 
consisting of 4 layers (3 hidden layers) and a width 
of 32 neurons: [1] + 32*[3] + [1]. The x-space 
component is taken as the input parameters of the 
network. Optimizers of the “Adam” type was 
selected as the network hyperparameter, and the 
learning rate was 0.001. Testing of 10,000 epochs 
was carried out for training a neural network, 
where the number of trained (collocation) points is 
100 and two points are used for the Dirichlet 
boundary condition. PINN construction is 
implemented using the deepxde deep learning 
library on top of TensorFlow, which supports many 
functions for constructing geometries. In Figures 2 
and 3 you can see the network training results and 
prediction:

For testing, 120 points of the numerical 
solution of the pressure equation and the predicted 
120 points of the PINN neural network were used. 
Figure 3 shows a visualization of the numerical 
solution and the PINN solution. From Figure 3 it is 
noticeable that the values are very close, the next 
Figure 4 shows the absolute error between the two 
solutions.

Figure 2 – PINN training loss history
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Figure 3 – Comparison of the numerical solution of the pressure equation with the PINN prediction

Figure 4 – Absolute error between the numerical solution and the PINN prediction
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4 Conclusion

A numerical algorithm and a fully connected 
neural network PINN have been developed and 
tested to solve the pressure equation. The 
results of the numerical solution of the pressure 
equation are compared with the prediction of a 
physics-informed neural network. In the
comparative analysis, it is revealed that the 
absolute error between the PINN predictions 
and the numerical solution is within the range of 
0.0005-0.003. This quantifiable measure 
underscores the precision and effectiveness of 
PINNs in capturing the complex dynamics of 

the pressure equation, positioning them as a 
valuable alternative to traditional linear 
approximation methods. At a more fundamental 
level, physics-informed neural networks provide 
a nonlinear approximation of a function and its 
derivatives, whereas traditional methods 
provide a linear approximation.
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