
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №4 (1) 2023 https://jpcsip.kaznu.kz

© 2023 Al-Farabi Kazakh National University 31

IRSTI 28.23.01 							 https://doi.org/10.26577/jpcsit2023v1i4a5

M.B. Mustafin1* , Zh.S. Muratay2 , B.K. Orazov3

1U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan
2Astana IT University, Astana, Kazakhstan

3Al-Farabi Kazakh National University, Almaty, Kazakhstan
*e-mail: mustafin.mb@gmail.com

HARNESSING GPU POWER FOR MACHINE LEARNING

IRSTI 28.23.01 https://doi.org/10.26577/jpcsit2023v1i4a5

 M.B. Mustafin1* , Zh.S. Muratay2 , B.K. Orazov3

1U.A. Joldasbekov Institute of Mechanics and Engineering, Almaty, Kazakhstan
2Astana IT University, Astana, Kazakhstan

3Al-Farabi Kazakh National University, Almaty, Kazakhstan
*e-mail: mustafin.mb@gmail.com

HARNESSING GPU POWER FOR MACHINE LEARNING

Abstract. In the rapidly evolving landscape of data science and machine learning, the need for high-speed,
efficient data processing is more critical than ever. This article delves into the pivotal role of graphics processing
units (GPUs) in transforming the realm of data analytics and machine learning. GPUs, originally designed for
rendering graphics in video games, have emerged as powerhouse tools in scientific computing due to their ability
to perform parallel computations swiftly and effectively.

The work conducted a study and comparison of the performance of machine learning algorithms using the
Scikit-Learn and RAPIDS cuML libraries on a GPU. Testing was carried out on various data volumes and the
results confirmed significant execution speedup when using RAPIDS cuML. This highlights the practical
importance of GPU acceleration for processing large data sets. In addition, the developed algorithms were
successfully applied to predict the oil recovery factor based on the Buckley-Leverett mathematical model,
demonstrating their effectiveness in the oil and gas industry. Overall, this article serves as a comprehensive
overview of the current state and future prospects of GPU utilization in data processing and machine learning,
providing valuable insights for both practitioners and researchers in the field.

Key words: GPU, Machine Learning, Linear Regression, Support Vector Machine Regression.

1 Introduction

In the modern world, the field of data and

machine learning is becoming a key element in
various areas, including science, industry, and
technology. With the continuous increase in data
volumes, there is a need for efficient methods and
tools for processing and analyzing them. The use of
graphics processing units (GPUs) has become an
integral part of the data processing process,
enabling parallel execution of complex
computations.

The relevance of this topic is due to the rapid
development of research in the field of
optimization of machine learning algorithms using
graphics processors. The authors of paper [1]
describe modifications of the GPGPU-Sim
simulator to support machine learning using
PyTorch and cuDNN. This modification provided
high accuracy of execution results and revealed
new opportunities for optimizing the
microarchitecture of GPUs for deep neural
networks. In article [2], innovative methods are
presented that accelerate feature generation and
reduce model training time by 15.6 times. Using
the RAPIDS.AI cuDF library and optimizations in

PyTorch, the authors significantly reduced the
prototyping time of deep learning-based
recommendation systems. In work [3], a study is
presented on the use of the cuML library,
developed by NVIDIA to accelerate machine
learning on GPUs, with particular attention to
support for cluster systems with multiple GPUs.
The authors propose a Python API for using MPI
for communication in cuML, conduct analysis and
benchmarking of algorithms.

This article presents an analysis of the
effectiveness of various methods, including the use
of CUDA technology for parallelizing matrix
operations, the RAPIDS library set (cuML and
cuDF) for data analysis and implementation of
machine learning algorithms on GPUs [4, 5, 6].

This research also considers alternative
machine learning methods, such as Linear
Regression, SVM, implemented using the RAPIDS
and Scikit Learn libraries [7, 8, 9]. The presented
performance analysis highlights the advantages of
using GPUs in training machine learning models,
especially when processing extensive data
volumes.

The developed algorithms were also tested on a
dataset generated from the Buckley-Leverett

https://doi.org/10.26577/jpcsit2023v1i4a5
https://orcid.org/0000-0002-3655-0771
https://orcid.org/0009-0002-5529-6120
https://orcid.org/0009-0006-5312-3575
mailto:mustafin.mb@gmail.com

32

Harnessing GPU power for machine learning

mathematical model for predicting the oil recovery
factor [10].

Based on the presented results, this article
substantiates the importance and prospects of using
graphics processors in the field of machine learning
and highlights fundamental methods leading to
improved performance and efficiency of
algorithms.

2 Materials and Methods

Machine learning is a field of computer science

that focuses on the development of algorithms and
models that allow computers to learn from data and
make predictions or make decisions without
explicit programming. This field finds applications
in various fields, including pattern recognition, data
analysis, classification and forecasting.

Regression algorithms are used to solve the
prediction problem when it is necessary to predict a
continuous value based on input data. These
algorithms build a model that describes the
relationship between the input features and the
output value. Examples of regression algorithms
are linear regression, decision trees, support vector
machine (SVM) and gradient boosting, each of
which is suitable for different types of data and
predictive tasks.

Scikit-learn, a widely used machine learning
library for Python, provides powerful tools for
applying regression algorithms. Among them is
linear regression based on a model of linear
dependence between the features and the target
variable. Linear regression is often used in simple
cases where a linear relationship between variables
is assumed. Scikit-learn also provides an
implementation of the Support vector Machine
(SVM) for regression. In the case of SVR, the
algorithm builds a hyperplane as far away from the
data points as possible, and thus makes predictions.
This method is effective when working with data,
where it is difficult to identify linear patterns, and
allows you to take into account nonlinear
relationships.

Thus, Scikit-learn becomes an essential tool for
machine learning specialists and researchers,
providing user-friendly interfaces for learning,
evaluating and selecting the best regression models
depending on the specific requirements of
forecasting tasks.

Scikit-Learn: LR and SVR algorithms
Linear regression in Scikit-learn is a model

designed to describe a linear relationship between
one or more features (independent variables) and a
target variable (dependent variable) representing a
continuous value.

Linear regression model
A linear regression model is a linear function

that describes the relationship between input and
output data. The visualization’s example of linear
regression model can be seen in Figure 1.

Figure 1 – Linear Regression (LR).

In general, the linear model looks like this:

y = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + . . . + 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛,

where 𝑦𝑦 – output value, 𝑤𝑤0 – free term, 𝑤𝑤𝑖𝑖 –
weighting factor for the i-th feature, 𝑥𝑥𝑖𝑖 – i-th
attribute.

Weights in linear regression are used to account
for the effect of each feature on the output feature.
The weights of the linear regression model are
determined during model training. The model
learning algorithm minimizes the model error by
selecting the optimal values of the weighting
coefficients.

Support Vector Machine Regression (SVM) is
a machine learning method that is used to predict
continuous values based on a dataset with
numerical features. SVR is an extension of the
support vector machine, which is used for
classification tasks.

33

M.B. Mustafin et al.

The SVR model
The SVR model is a hyperplane that divides the

feature space into two parts. The values of the
output feature for points that are on one side of the
hyperplane will be the same. The visualization’s
example of SVR model can be seen in Figure 2.

Figure 2 – Support vector regression (SVR).

The SVR model can be written as follows:

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀,

where 𝑦𝑦 – output value, 𝑥𝑥 – input data, 𝑓𝑓(𝑥𝑥) – a
function that describes the relationship between
input and output data, 𝜀𝜀 – model error.

The function 𝑓𝑓(𝑥𝑥) can have different forms,
depending on the method used to train the SVR
model. The main goal here is to determine the
boundary of the solution at a distance 𝜀𝜀 from the
original hyperplane so that data points close to the
hyperplane or being reference vectors are located
within this boundary line.

RAPIDS: LR and SVR algorithms
RAPIDS is a set of open source libraries that

accelerate machine learning and data analysis on
the GPU. RAPIDS is based on the CUDA and cuda
libraries and uses GPU capabilities to improve
performance.

RAPIDS has the following libraries for use in
machine learning:

 cuML – a library for machine learning on the
GPU. It provides implementations of basic
machine learning algorithms such as linear

regression, logistic regression, k-means, k-nearest
neighbors, etc.

 cuGraph – a library for processing graphs on
the GPU. It provides tools for working with graphs,
such as graph calculations, graph algorithms, etc.

 cuDF – a library for processing data on the
GPU. It provides tools for working with data, such
as data downloads, data transformations,
calculations, etc.

RAPIDS cuML provides implementations of
two main regression algorithms: linear regression
(LR) and support vector machine regression (SVR).

Linear Regression is a function for training a
linear regression model. This function takes as
input a set of data with numeric attributes and a
target attribute. The output result of the function is
an object of the linear regression model

SVR is a function for training a regression
model using the support vector machine. This
function takes as input a set of data with numeric
attributes and a target attribute. The output result of
the function is an object of the regression model
using the support vector machine.

The Linear Regression function and SVR use
CUDA libraries to speed up GPU computing.
CUDA is a set of libraries and tools that provide
programmers with access to GPU hardware. CUDA
libraries provide functions for performing various
operations on the GPU, such as scalar operations,
vector operations, and matrix operations. The linear
regression model learning algorithm is also
optimized for GPU computing. Special data
structures are used that are optimized for accessing
data from the GPU. In addition, special algorithms
are used to speed up calculations.

predict is a function for predicting the values of
a target feature for new data. This function takes as
input an object of the linear regression model and a
dataset with new data. The output result of the
function is a set of predicted values of the target
feature.

Implementation and Testing of Training Models

using cuML
In this paper, two regression models based on

the linear regression algorithm and the support
vector machine (SVM) regression have been
successfully implemented using the cuML library,
specially designed for optimal performance on
graphics processors (GPUs).

34

Harnessing GPU power for machine learning

Implementations of LR and SVR using the
cuML library in the RAPIDS environment on a
graphics processor (GPU).

To begin with, random data was generated for
the regression task using the make_regression
function from the cuML library. The data was then
converted to udf format for efficient processing on
the GPU.

import cudf
from cuml.datasets import make_regression
from cuml.model_selection import train_test_split
n_samples = 80000
n_features = 20

X, y = make_regression(n_samples=n_samples,

n_features=n_features, random_state=42)

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)
X_train = cudf.DataFrame(X_train)
y_train = cudf.Series(y_train)
X_test = cudf.DataFrame(X_test)
y_test = cudf.Series(y_test)

Then, instances of the LR and SVM model

were created using the Linear Regression and SVM
class from the cuML library, and the model was
trained on the training data.

from cuml import SVR
from cuml.linear_model import LinearRegression as LR

modelLR = LR(fit_intercept = True, normalize = True,
algorithm = 'eig')

modelLR.fit(X_train, y_train)
modelSVR = SVR(C=1.0, kernel='rbf', gamma=0.1)
modelSVR.fit(X_train, y_train)

After training the model, its performance is

evaluated. Predictions were made on the test data,
and metrics were calculated for an objective
assessment of the quality of the trained model. The
developed algorithms have been successfully tested
on a dataset based on the Buckley-Leverett
mathematical model designed to predict the oil
recovery coefficient. Input parameters include
porosity, absolute permeability, phase viscosity,
and time iterations.

3 Results and Discussion

The experiments were conducted on a personal

computer with a high-performance Intel Core i9-
10900KF processor, 32 gb of RAM and a discrete
NVIDIA RTX 3070 GPU with 8 gb of video
memory. This configuration provides powerful
computing resources and allows efficient use of
libraries optimized for working with the GPU. The
results of Linear Regression testing using the
scikit-learn and cuML libraries on the RAPIDS
platform are presented in Table 1 and
Table 2:

Table 1 – Linear Regression Test Results: scikit-learn vs cuML

Number of instances Scikit-Learn RAPIDS cuML
300000 0.10 0.004
600000 0.22 0.007

1200000 0.568 0.012
2000000 0.933 0.012

There is a significant acceleration of the

Linear Regression model when using cuML on
the RAPIDS platform compared to Scikit-Learn.
The effectiveness of cuML is especially evident
when the amount of data increases. It is
noticeable that cuML on RAPIDS is
successfully scaling with an increase in the

number of data instances. This indicates the
high efficiency of processing large amounts of
data using a GPU. With the time difference,
especially at 2,097,120 instances, cuML
confirms its outstanding performance in
processing large data. The graph of the results
presented in Table 1 is shown in Figure 3.

35

M.B. Mustafin et al.

Figure 3 – The Effectiveness Of Linear Regression: Scikit-Learn vs RAPIDS cuML.

Table 2 – Test results of the Support Vector Machine (SVM): scikit-learn vs cuML

Number of instances Scikit-Learn RAPIDS cuML
10000 1.424 0.35
20000 5.795 0.62
40000 22.56 1.077
80000 83.9 3.562

The results clearly demonstrate a significant

acceleration in the performance of the support
vector machine (SVM) when using cuML on the
RAPIDS platform compared to the scikit-learn
library. The use of cuML is particularly

advantageous when working with large amounts of
data. With 80,000 instances, cuML demonstrates
more than 20 times faster calculations compared to
scikit-learn. The graph of the results presented in
Table 2 is shown in Figure 4.

Figure 4 – The Effectiveness of the Support Vector Machine (SVM):
Scikit-Learn vs RAPIDS cuML.

0,0039063

0,0078125

0,015625

0,03125

0,0625

0,125

0,25

0,5

1

300000 600000 1200000 2097120

se
c

Scikit-Learn RAPIDS cuML

0,25
0,5

1
2
4
8

16
32
64

128

10000 20000 40000 80000

se
c

Scikit-Learn RAPIDS cuML

36

Harnessing GPU power for machine learning

4 Conclusion

During the research, Linear Regression and

Support Vector Machine (SVM) algorithms were
developed and tested using the Scikit-Learn and
cuML libraries on the RAPIDS platform.
Experiments have been successfully conducted on
data sets, including those generated from the
Buckley-Leverett mathematical model for oil
recovery factor prediction. Test results confirmed a
significant acceleration of the algorithms when
using cuML on the RAPIDS platform compared to
the Scikit-Learn library. This is especially
noticeable when processing large volumes of data,
which demonstrates the outstanding performance of
GPU computing.

Introducing GPU compute capabilities using
RAPIDS and cuML opens new horizons in
machine learning, delivering high performance and
efficiency when processing big data. The results
highlight the potential of these technologies to
solve complex problems and provide a basis for
further research and industrial applications.

Acknowledgments

This research was funded by the Science

Committee of the Ministry of Science and Higher
Education of the Republic of Kazakhstan, grant
number BR18574136.

References

1. J. Lew et al., "Analyzing Machine Learning Workloads Using a Detailed GPU Simulator," 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 2019, pp. 151-152, doi:
10.1109/ISPASS.2019.00028.

2. Sara Rabhi, Wenbo Sun, Julio Perez, Mads R. B. Kristensen, Jiwei Liu, and Even Oldridge. 2019. Accelerating
recommender system training 15x with RAPIDS. In Proceedings of the Workshop on ACM Recommender Systems Challenge
(RecSys Challenge '19). Association for Computing Machinery, New York, NY, USA, Article 8, 1–5.
https://doi.org/10.1145/3359555.3359564

3. S. M. Ghazimirsaeed, Q. Anthony, A. Shafi, H. Subramoni and D. K. D. Panda, "Accelerating GPU-based Machine
Learning in Python using MPI Library: A Case Study with MVAPICH2-GDR," 2020 IEEE/ACM Workshop on Machine Learning
in High Performance Computing Environments (MLHPC) and Workshop on Artificial Intelligence and Machine Learning for
Scientific Applications (AI4S), GA, USA, 2020, pp. 1-12, doi: 10.1109/MLHPCAI4S51975.2020.00010.

4. RAPIDS.AI. 2019. RAPIDS.AI cuDF repository. https://github.com/rapidsai/cuDF
5. T. Hricik, D. Bader and O. Green, "Using RAPIDS AI to Accelerate Graph Data Science Workflows," 2020 IEEE High

Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 2020, pp. 1-4, doi:
10.1109/HPEC43674.2020.9286224.

6. N. Becker et al., "Streamlined and Accelerated Cyber Analyst Workflows with CLX and RAPIDS," 2019 IEEE
International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 2011-2015, doi:
10.1109/BigData47090.2019.9006035.

7. G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller. 2015. Scikit-learn: Machine Learning
Without Learning the Machinery. GetMobile: Mobile Comp. and Comm. 19, 1 (January 2015), 29–33.
https://doi.org/10.1145/2786984.2786995.

8. Hao, J., & Ho, T. K. (2019). Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming
Language. Journal of Educational and Behavioral Statistics, 44(3), 348-361. https://doi.org/10.3102/1076998619832248

9. Pedregosa, Fabian & Varoquaux, Gael & Gramfort, Alexandre & Michel, Vincent & Thirion, Bertrand & Grisel, Olivier &
Blondel, Mathieu & Prettenhofer, Peter & Weiss, Ron & Dubourg, Vincent & Vanderplas, Jake & Passos, Alexandre &
Cournapeau, David & Brucher, Matthieu & Perrot, Matthieu & Duchesnay, Edouard & Louppe, Gilles. (2012). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research. 12.

10. Kenzhebek, Yerzhan, Timur Imankulov, Darkhan Akhmed-Zaki, and Beimbet Daribayev. “Implementation of Regression
Algorithms for Oil Recovery Prediction.” Eastern-European Journal of Enterprise Technologies. Private Company Technology
Center, April 30, 2022. https://doi.org/10.15587/1729-4061.2022.253886

