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Abstract. In the rapidly evolving landscape of data science and machine learning, the need for high-speed, 
efficient data processing is more critical than ever. This article delves into the pivotal role of graphics processing 
units (GPUs) in transforming the realm of data analytics and machine learning. GPUs, originally designed for 
rendering graphics in video games, have emerged as powerhouse tools in scientific computing due to their ability 
to perform parallel computations swiftly and effectively. 

The work conducted a study and comparison of the performance of machine learning algorithms using the 
Scikit-Learn and RAPIDS cuML libraries on a GPU. Testing was carried out on various data volumes and the 
results confirmed significant execution speedup when using RAPIDS cuML. This highlights the practical 
importance of GPU acceleration for processing large data sets. In addition, the developed algorithms were 
successfully applied to predict the oil recovery factor based on the Buckley-Leverett mathematical model, 
demonstrating their effectiveness in the oil and gas industry. Overall, this article serves as a comprehensive 
overview of the current state and future prospects of GPU utilization in data processing and machine learning, 
providing valuable insights for both practitioners and researchers in the field. 
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1 Introduction 
 
In the modern world, the field of data and 

machine learning is becoming a key element in 
various areas, including science, industry, and 
technology. With the continuous increase in data 
volumes, there is a need for efficient methods and 
tools for processing and analyzing them. The use of 
graphics processing units (GPUs) has become an 
integral part of the data processing process, 
enabling parallel execution of complex 
computations. 

The relevance of this topic is due to the rapid 
development of research in the field of 
optimization of machine learning algorithms using 
graphics processors. The authors of paper [1] 
describe modifications of the GPGPU-Sim 
simulator to support machine learning using 
PyTorch and cuDNN. This modification provided 
high accuracy of execution results and revealed 
new opportunities for optimizing the 
microarchitecture of GPUs for deep neural 
networks. In article [2], innovative methods are 
presented that accelerate feature generation and 
reduce model training time by 15.6 times. Using 
the RAPIDS.AI cuDF library and optimizations in 

PyTorch, the authors significantly reduced the 
prototyping time of deep learning-based 
recommendation systems. In work [3], a study is 
presented on the use of the cuML library, 
developed by NVIDIA to accelerate machine 
learning on GPUs, with particular attention to 
support for cluster systems with multiple GPUs. 
The authors propose a Python API for using MPI 
for communication in cuML, conduct analysis and 
benchmarking of algorithms. 

This article presents an analysis of the 
effectiveness of various methods, including the use 
of CUDA technology for parallelizing matrix 
operations, the RAPIDS library set (cuML and 
cuDF) for data analysis and implementation of 
machine learning algorithms on GPUs [4, 5, 6]. 

This research also considers alternative 
machine learning methods, such as Linear 
Regression, SVM, implemented using the RAPIDS 
and Scikit Learn libraries [7, 8, 9]. The presented 
performance analysis highlights the advantages of 
using GPUs in training machine learning models, 
especially when processing extensive data 
volumes. 

The developed algorithms were also tested on a 
dataset generated from the Buckley-Leverett 
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mathematical model for predicting the oil recovery 
factor [10]. 

Based on the presented results, this article 
substantiates the importance and prospects of using 
graphics processors in the field of machine learning 
and highlights fundamental methods leading to 
improved performance and efficiency of 
algorithms. 

 
2 Materials and Methods  
 
Machine learning is a field of computer science 

that focuses on the development of algorithms and 
models that allow computers to learn from data and 
make predictions or make decisions without 
explicit programming. This field finds applications 
in various fields, including pattern recognition, data 
analysis, classification and forecasting. 

Regression algorithms are used to solve the 
prediction problem when it is necessary to predict a 
continuous value based on input data. These 
algorithms build a model that describes the 
relationship between the input features and the 
output value. Examples of regression algorithms 
are linear regression, decision trees, support vector 
machine (SVM) and gradient boosting, each of 
which is suitable for different types of data and 
predictive tasks. 

Scikit-learn, a widely used machine learning 
library for Python, provides powerful tools for 
applying regression algorithms. Among them is 
linear regression based on a model of linear 
dependence between the features and the target 
variable. Linear regression is often used in simple 
cases where a linear relationship between variables 
is assumed. Scikit-learn also provides an 
implementation of the Support vector Machine 
(SVM) for regression. In the case of SVR, the 
algorithm builds a hyperplane as far away from the 
data points as possible, and thus makes predictions. 
This method is effective when working with data, 
where it is difficult to identify linear patterns, and 
allows you to take into account nonlinear 
relationships. 

Thus, Scikit-learn becomes an essential tool for 
machine learning specialists and researchers, 
providing user-friendly interfaces for learning, 
evaluating and selecting the best regression models 
depending on the specific requirements of 
forecasting tasks. 

 
 

Scikit-Learn: LR and SVR algorithms 
Linear regression in Scikit-learn is a model 

designed to describe a linear relationship between 
one or more features (independent variables) and a 
target variable (dependent variable) representing a 
continuous value. 

 
Linear regression model 
A linear regression model is a linear function 

that describes the relationship between input and 
output data. The visualization’s example of linear 
regression model can be seen in Figure 1. 

 
 

 
 

Figure 1 – Linear Regression (LR). 
 
 
In general, the linear model looks like this: 
 
y =  𝑤𝑤0  +  𝑤𝑤1𝑥𝑥1 +  𝑤𝑤2𝑥𝑥2 + . . . + 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛, 
 

where 𝑦𝑦 – output value, 𝑤𝑤0 – free term, 𝑤𝑤𝑖𝑖 – 
weighting factor for the i-th feature, 𝑥𝑥𝑖𝑖 – i-th 
attribute. 

Weights in linear regression are used to account 
for the effect of each feature on the output feature. 
The weights of the linear regression model are 
determined during model training. The model 
learning algorithm minimizes the model error by 
selecting the optimal values of the weighting 
coefficients. 

Support Vector Machine Regression (SVM) is 
a machine learning method that is used to predict 
continuous values based on a dataset with 
numerical features. SVR is an extension of the 
support vector machine, which is used for 
classification tasks. 
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The SVR model 
The SVR model is a hyperplane that divides the 

feature space into two parts. The values of the 
output feature for points that are on one side of the 
hyperplane will be the same. The visualization’s 
example of SVR model can be seen in Figure 2. 

 
 

 
 

Figure 2 – Support vector regression (SVR). 
 
 
The SVR model can be written as follows: 

 
𝑦𝑦 =  𝑓𝑓(𝑥𝑥)  +  𝜀𝜀, 

 
where 𝑦𝑦 – output value, 𝑥𝑥 – input data, 𝑓𝑓(𝑥𝑥) – a 
function that describes the relationship between 
input and output data, 𝜀𝜀 – model error. 

The function 𝑓𝑓(𝑥𝑥) can have different forms, 
depending on the method used to train the SVR 
model. The main goal here is to determine the 
boundary of the solution at a distance 𝜀𝜀 from the 
original hyperplane so that data points close to the 
hyperplane or being reference vectors are located 
within this boundary line. 

 
RAPIDS: LR and SVR algorithms 
RAPIDS is a set of open source libraries that 

accelerate machine learning and data analysis on 
the GPU. RAPIDS is based on the CUDA and cuda 
libraries and uses GPU capabilities to improve 
performance. 

RAPIDS has the following libraries for use in 
machine learning: 

 cuML – a library for machine learning on the 
GPU. It provides implementations of basic 
machine learning algorithms such as linear  
 

regression, logistic regression, k-means, k-nearest 
neighbors, etc. 

 cuGraph – a library for processing graphs on 
the GPU. It provides tools for working with graphs, 
such as graph calculations, graph algorithms, etc. 

 cuDF – a library for processing data on the 
GPU. It provides tools for working with data, such 
as data downloads, data transformations, 
calculations, etc. 

RAPIDS cuML provides implementations of 
two main regression algorithms: linear regression 
(LR) and support vector machine regression (SVR). 

Linear Regression is a function for training a 
linear regression model. This function takes as 
input a set of data with numeric attributes and a 
target attribute. The output result of the function is 
an object of the linear regression model 

SVR is a function for training a regression 
model using the support vector machine. This 
function takes as input a set of data with numeric 
attributes and a target attribute. The output result of 
the function is an object of the regression model 
using the support vector machine. 

The Linear Regression function and SVR use 
CUDA libraries to speed up GPU computing. 
CUDA is a set of libraries and tools that provide 
programmers with access to GPU hardware. CUDA 
libraries provide functions for performing various 
operations on the GPU, such as scalar operations, 
vector operations, and matrix operations. The linear 
regression model learning algorithm is also 
optimized for GPU computing. Special data 
structures are used that are optimized for accessing 
data from the GPU. In addition, special algorithms 
are used to speed up calculations. 

predict is a function for predicting the values of 
a target feature for new data. This function takes as 
input an object of the linear regression model and a 
dataset with new data. The output result of the 
function is a set of predicted values of the target 
feature. 

 
Implementation and Testing of Training Models 

using cuML 
In this paper, two regression models based on 

the linear regression algorithm and the support 
vector machine (SVM) regression have been 
successfully implemented using the cuML library, 
specially designed for optimal performance on 
graphics processors (GPUs). 
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Implementations of LR and SVR using the 
cuML library in the RAPIDS environment on a 
graphics processor (GPU). 

To begin with, random data was generated for 
the regression task using the make_regression 
function from the cuML library. The data was then 
converted to udf format for efficient processing on 
the GPU. 

 
import cudf 
from cuml.datasets import make_regression 
from cuml.model_selection import train_test_split 
n_samples = 80000 
n_features = 20 
 
X, y = make_regression(n_samples=n_samples, 

n_features=n_features, random_state=42) 
 
X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 
X_train = cudf.DataFrame(X_train) 
y_train = cudf.Series(y_train) 
X_test = cudf.DataFrame(X_test) 
y_test = cudf.Series(y_test) 
 
Then, instances of the LR and SVM model 

were created using the Linear Regression and SVM 
class from the cuML library, and the model was 
trained on the training data. 

 
from cuml import SVR 
from cuml.linear_model import LinearRegression as LR 

modelLR = LR( fit_intercept = True, normalize = True, 
algorithm = 'eig') 

modelLR.fit(X_train, y_train) 
modelSVR = SVR(C=1.0, kernel='rbf', gamma=0.1) 
modelSVR.fit(X_train, y_train) 
 
After training the model, its performance is 

evaluated. Predictions were made on the test data, 
and metrics were calculated for an objective 
assessment of the quality of the trained model. The 
developed algorithms have been successfully tested 
on a dataset based on the Buckley-Leverett 
mathematical model designed to predict the oil 
recovery coefficient. Input parameters include 
porosity, absolute permeability, phase viscosity, 
and time iterations. 

 
3 Results and Discussion 
 
The experiments were conducted on a personal 

computer with a high-performance Intel Core i9-
10900KF processor, 32 gb of RAM and a discrete 
NVIDIA RTX 3070 GPU with 8 gb of video 
memory. This configuration provides powerful 
computing resources and allows efficient use of 
libraries optimized for working with the GPU. The 
results of Linear Regression testing using the 
scikit-learn and cuML libraries on the RAPIDS 
platform are presented in Table 1 and  
Table 2: 

 
 

Table 1 – Linear Regression Test Results: scikit-learn vs cuML 
 

Number of instances Scikit-Learn RAPIDS cuML 
300000 0.10 0.004 
600000 0.22 0.007 

1200000 0.568 0.012 
2000000 0.933 0.012 

 
 
There is a significant acceleration of the 

Linear Regression model when using cuML on 
the RAPIDS platform compared to Scikit-Learn. 
The effectiveness of cuML is especially evident 
when the amount of data increases. It is 
noticeable that cuML on RAPIDS is 
successfully scaling with an increase in the 

number of data instances. This indicates the 
high efficiency of processing large amounts of 
data using a GPU. With the time difference, 
especially at 2,097,120 instances, cuML 
confirms its outstanding performance in 
processing large data. The graph of the results 
presented in Table 1 is shown in Figure 3. 
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Figure 3 – The Effectiveness Of Linear Regression: Scikit-Learn vs RAPIDS cuML. 
 
 
Table 2 – Test results of the Support Vector Machine (SVM): scikit-learn vs cuML 
 

Number of instances Scikit-Learn RAPIDS cuML 
10000 1.424 0.35 
20000 5.795 0.62 
40000 22.56 1.077 
80000 83.9 3.562 

 
 
The results clearly demonstrate a significant 

acceleration in the performance of the support 
vector machine (SVM) when using cuML on the 
RAPIDS platform compared to the scikit-learn 
library. The use of cuML is particularly 

advantageous when working with large amounts of 
data. With 80,000 instances, cuML demonstrates 
more than 20 times faster calculations compared to 
scikit-learn. The graph of the results presented in 
Table 2 is shown in Figure 4. 

 
 

 
 

Figure 4 – The Effectiveness of the Support Vector Machine (SVM):  
Scikit-Learn vs RAPIDS cuML. 
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4 Conclusion 
 
During the research, Linear Regression and 

Support Vector Machine (SVM) algorithms were 
developed and tested using the Scikit-Learn and 
cuML libraries on the RAPIDS platform. 
Experiments have been successfully conducted on 
data sets, including those generated from the 
Buckley-Leverett mathematical model for oil 
recovery factor prediction. Test results confirmed a 
significant acceleration of the algorithms when 
using cuML on the RAPIDS platform compared to 
the Scikit-Learn library. This is especially 
noticeable when processing large volumes of data, 
which demonstrates the outstanding performance of 
GPU computing. 

Introducing GPU compute capabilities using 
RAPIDS and cuML opens new horizons in 
machine learning, delivering high performance and 
efficiency when processing big data. The results 
highlight the potential of these technologies to 
solve complex problems and provide a basis for 
further research and industrial applications. 
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