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Abstract. The advent of smart buildings owes much to the emergence of Digital Twins. In con-
temporary structures, a wealth of data is available, enabling the digital representation of buildings and 
facilitating improvements in energy management, particularly in heating, ventilation, and air condition-
ing (HVAC) systems. To effectively implement an energy management strategy within a building, a data-
driven approach must accurately assess HVAC system attributes, with a focus on room temperature. 
Precise temperature forecasts not only enhance thermal comfort but also play a pivotal role in energy 
conservation. This research aims to explore data-driven methodologies and develop a model for room 
temperature prediction, employing machine learning algorithms in a case study of an educational build-
ing. This article details the methodology, points of interaction, and findings of this study. Relevant model 
parameters are identified to construct temperature prediction models using real-world data, demonstrat-
ing the efficacy of the proposed system, with an average prediction accuracy exceeding 95%. These 
results underscore its potential to enhance energy efficiency and thermal comfort, highlighting the use of 
Artificial Neural Networks (ANNs) as a pivotal component in achieving these goals.

Key words: Digital Twin, HVAC systems, Artificial Neural Networks, SCADA, thermal comfort, con-
trol box.

1. Introduction

A fatal deficiency for human health is a lack 
of clean, fresh air. Our well-being can endure 
on the off chance that we invest a ton of energy 
inside, working or examining, contingent upon our 
occupation. In this way, in any occupied structure, 
having appropriately ventilated spaces is essential. 
Heating or cooling may be required depending on 
the season or the building’s purpose. It is difficult 
to keep a reasonable indoor temperature without 
an appropriately working HVAC framework. Few 
scientists have expressed that central air systems 
constitute the most prevalent source of energy 
consumption within a building, accounting for more 
than half of the structure’s energy usage [1]. As a 
result, the HVAC system needs to be optimized to 
ensure occupants’ comfort while simultaneously 
lowering energy consumption.

Building Information Modeling (BIM) can 
be used in this field to digitally model complex 
systems with accurate information to make the 
optimization process more effective and user-
friendly. This information can then be used 

in a variety of applications for performance 
assessments and decision-making. Users will be 
able to add new features for automating repetitive 
tasks, conducting in-depth analysis, and solving 
complex problems, such as optimizing building 
thermal properties, through the development of an 
Application Programming Interface (API) in BIM 
[2]. Data from the Internet of Things (IoT), such 
as sensor networks, and feedback from occupants 
can be connected to BIM as an additional benefit 
for monitoring the equipment and environment of 
the building, which is beneficial for the optimization 
process. This association is important to make what 
is known as the Digital Twin of the air conditioning 
framework (HVACDT).

Energy consumption and HVAC system 
performance must be controlled with the utmost 
precision as they significantly influence the long-
term viability of buildings and the surrounding 
landscape. Building managers’ poor decisions can 
result in energy waste, high costs, and unsatisfactory 
heating [3]. The proposed system has demonstrated 
that it can assist building managers in planning the 
human resources required to address temperature 
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complaints, thereby improving tenant satisfaction 
and the building’s operational properties [4]. 
Temperature-related grievances are among the 
most common types of complaints [5]. Therefore,  
advanced intelligent digital technologies must 
be utilized in the context of sustainable facility 
management business development because these 
technologies can help improve information flow and 
make predictions based on sensor data [6]. In this 
article, the central air Digital Twin framework was 
created as a constant framework to assist buyers with 
pursuing more productive choices in the structure’s 
life cycle.

IoT, artificial intelligence, and BIM are utilized 
in Digital Twin innovation [7]. These technologies 
have enabled the digitalization of numerous assets, 
allowing the virtual part of the object to interact 
with its physical counterpart throughout its entire 
lifespan [8]. While various definitions of a Digital 
Twin are available in the literature, for instance, [9] 
and [10], it is worth noting that Laments initially 
conceptualized the idea of a Digital Twin in 2012. 
Several years later, Laments emphasized that he was 
referring to a dataset that provides a comprehensive 
representation of an asset, covering its fundamental 
mathematical characteristics to its most specific 
capabilities (Laments and Vickers, cited in 2017). 
The initial step in this article involves developing a 
module for real-time data collection and feedback 
from sensors. Then, at that point, all the data from this 
module will be transmitted to the SCADA platform, 
a Digital Twin model. The Digital Twin model is 
incorporated into the smart platform, adjusting 
parameters according to predefined settings and 
comparing them with real-time values. As a result, 
the proposed system maintains thermal comfort in 
the building while reducing energy consumption.

2. Literature review

When developing control strategies for HVAC 
systems, indoor temperature prediction is one of the 
most important methods for determining thermal 
comfort levels in buildings and identifying potential 
energy savings. Throughout the past ten years, 
various investigations have been completed to model 
HVAC systems and simulate indoor temperature 
variations.

Physics-based models have conventionally been 
widely developed to express the intricate physics, 
energy, heat transfer, and thermodynamics associated 
with buildings in order to model and optimize 
HVAC systems. The majority of these models were 
worked with the objective of system control and 

enhancing energy efficiency. To optimize the multi-
zone HVAC system, [11] developed a supervisory 
control strategy for a Variable Air Volume (VAV) 
system based on a simplified physics-based model. 
As HVAC systems become more perplexing, non-
linear, and large-scale, encompassing diverse 
requirements and factors, the development 
of physics-based models for building energy 
management becomes much more challenging [12]. 
High-order complex models are frequently utilized 
in order to generate precise physics-based models. 
However, these latter options are computationally 
expensive, and reducing model complexity can lead 
to an increase in prediction errors [13]. Moreover, 
the implementation of complex models in real-
time applications is challenging due to their high 
computational demands [14]. Consequently, these 
developed physics-based models typically tend to be 
deterministic, necessitating numerous assumptions 
and simplifications of their parameters, rendering 
them less applicable for addressing and impeding 
the day-to-day operations of buildings.

In recent years, various data-driven approaches 
have emerged to address the limitations of 
traditional physics-based models. Many studies 
have concentrated on constructing predictive 
models utilizing data mining techniques. In the 
realm of artificial intelligence, these data-driven 
models, often referred to as “black box” models, are 
constructed directly from data using algorithms that 
are not easily interpretable or explainable in terms 
of how they combine variables to make predictions.

As a result, researchers in HVAC system 
modeling have employed artificial intelligence 
algorithms to forecast indoor temperatures. Two 
examples of such models built by these algorithms 
are deep learning (DL) neural networks and machine 
learning (ML) tree-based models.

Tree-based machine learning models are 
constructed by recursively dividing the considered 
observations based on specific criteria. These splits 
are determined by evaluating all potential divisions 
in the data and selecting the one that results in the 
highest reduction in mean squared error (MSE) for 
the child nodes. Tree-based ensemble techniques 
combine multiple decision tree predictors to enhance 
performance and create more robust predictive 
models. Several studies [15] have examined the 
effectiveness of ensemble methods, including 
Random Forests and Extra Trees, in forecasting time 
series datasets, particularly within HVAC systems.

The adoption of ensemble techniques like Random 
Forests and Extra Trees highlights the importance 
of model robustness in HVAC predictions. These 
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approaches not only enhance accuracy but also 
provide insights into feature importance, aiding in 
the understanding of which variables play a pivotal 
role in temperature forecasting.

On the other hand, ANNs serve as the cornerstone 
of deep learning strategies. They involve processing 
data through algorithms to identify relevant features 
and then combining these features to facilitate rapid 
learning [16]. These algorithms have the capability 
to learn from input data and generate outputs based 
on the patterns and relationships they discover 
within that data. They can also complete multiple 
tasks simultaneously without compromising the 
system’s performance. Research indicates that both 
internal [17] and external [18] disturbances affecting 
the modeling process can be managed by systems 
employing the ANN modeling approach. 

In addition, robust mathematical foundations 
have been developed by researchers that enable 
ANN to handle real-time events by learning from 
examples and applying that knowledge in similar 
situations [19]. Several studies [20] developed a 
variety of straightforward to complex models for 
a variety of scenarios in order to model indoor 
temperatures. All of these studies discovered that 
ANN models provided temperature predictions with 
an acceptable level of accuracy. 

However, it’s worth noting that research on 
ANN modeling for buildings has primarily centered 
on residential buildings and laboratories. The 
limited dataset size often used in this field, often 
focusing on a single building zone, can restrict the 
generalizability of findings. 

Additionally, the preprocessing phase and 
the selection of input variables are frequently 
overlooked, leading to a lack of clarity regarding 
the methodology. In the quest for improving 
ANN models for HVAC, careful consideration 
of preprocessing steps and feature selection is 
imperative. These aspects are often overlooked but 
can significantly impact model performance and 
interpretability.

3. Materials and Methods 

For precise control of gas, temperature, humidity, 
and indoor air conditioning (including heating 
and ventilation), the proposed system involves a 
complex combination of both software and hardware 
components. This system comprises two primary 
modules: one for decision-making and another for 
the collection, processing, and monitoring of indoor 
air parameters such as temperature and humidity. 
The programmable equipment controller plays a 

central role by receiving temperature data from 
sensors strategically positioned throughout the 
room. This data transmission occurs through the 
information retrieval module, ensuring real-time 
monitoring and control of the indoor environment.

For this study, we selected a laboratory space at 
Al-Farabi Kazakh National University as our research 
environment. To ensure precise data evaluation and 
the establishment of a dynamic module, we employed 
various sensors, including temperature, humidity, and 
voltage sensors, which were strategically installed 
within the laboratory. Our primary objective was to 
develop a control system capable of regulating the 
room’s heating and cooling based on the data collected 
from these sensors. It’s worth noting that while we 
conducted this research in a lab setting, similar results 
can be achieved in larger rooms by installing sensors 
at intervals of 10 meters, or in smaller rooms, with 
sensors placed at intervals of 2-3 meters. Data from 
the sensors were gathered using a data transmission 
module equipped with robust redundancy mechanisms 
(Ethernet/WiFi). We employed the Modbus RTU 
protocol and an RS-485 controller for efficient 
data communication. Subsequently, the controller 
transmitted a MySQL dataset containing the collected 
data to our dedicated server, conveniently located 
within the laboratory premises.

The data grouping module is responsible for 
transmitting temperature data gathered from the 
sensors positioned throughout the designated 
space to the programmable equipment controller. 
Simultaneously, the buffering module plays a 
crucial role in pre-processing the sensor data, which 
is subsequently utilized by the decision-making 
module, aiding in effective and informed decision-
making based on the data retrieved from the server.

In this experiment, we only used information 
about temperature and humidity to prepare the 
decision-making module, which will then be used 
to control the room’s heating and cooling. The 
forecasting module comes into play by predicting 
temperature circulation values for various air 
conditioning system operation modes. These 
predictions are generated using a pre-trained 
neural model. The dynamic module operates by 
transmitting control signals to the controller, 
facilitating temperature regulation, and selecting the 
most suitable temperature mode for the heating and 
cooling system. This ensures efficient heat transfer 
within the room and contributes to maintaining the 
desired indoor climate conditions.

Stochastic Gradient Descent (SGD) played a 
crucial role in optimizing the model, while the MSE 
served as the evaluation metric.
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The Root Mean Squared Error (RMSE) metric 
is used in scenarios where it is essential to highlight 
significant errors and prioritize models that minimize 
large prediction errors. Conversely, the MSE is 
employed when the emphasis is on minimizing 
errors across all data points, without a specific focus 
on the magnitude of individual errors. 

The MSE metric was chosen as the evaluation 
criterion in this experiment due to its suitability 
for scenarios where the goal is to comprehensively 
assess and minimize prediction errors across all data 
points.

In this context, we analyze the magnitude of 
neural network connections and the actual values 
provided by the sensors within a specific time 
interval. Within this analysis, we compare the true 

values to the values derived from the assessments. By 
subtracting the minimum value from the maximum 
value, we can determine a range that corresponds to 
a model with minimal prediction errors, typically in 
the range of 95-100%.

The portion of data extracted from the x-test 
dataset demonstrates the practical utility of 
temperature data in our study. In the subsequent 
section, we delve into the predictions made by 
the neural network, as illustrated in Figure 2. 
Following that, in Figure 3, we meticulously 
examine the disparities between the actual data and 
the predictions. In this analysis, it becomes evident 
that the neural network exhibits minimal prediction 
errors, which is a strong indicator of the model’s 
effective performance.

Figure 1 – Neural Network Architecture 

Figure 2 – Neural Network Predictions
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Prediction errors decrease with each successive 
iteration of the neural network training and 
prediction, as shown in fi gures 2, 3, and 4.

The loss and accuracy visualizations in fi gure 
3 provide an insightful view of the training 

process. It illustrates how our neural network 
model’s loss and accuracy evolved during training. 
This visualization helps us gauge the model’s 
learning progress and identify potential areas for 
improvement.

       

Figure 3 – Loss and Accuracy visualization 

Figure 4 – Performance Metrics for Advisory Mode Control System Evaluation

The performance metrics in fi gure 4 delves 
deeper into the evaluation of our advisory mode 
control system. We calculate precision, recall, and 
F1 scores for diff erent control modes. These metrics 
are essential in quantifying the model’s ability 
to make accurate recommendations and provide 
valuable insights for system optimization.

As a result, we examine the neural network’s 
performance in relation to sensor data. In these 

visual representations, we compare the actual values 
to those obtained from the sensors. Within the chart, 
we calculate the ratio of the highest value to the 
lowest value, resulting in a range typically between 
90-95%. This article presents the development of a 
neural network, functioning as a recommendation 
system, for intelligent and optimal control of air 
conditioners based on temperature parameter 
forecasting.
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Figure 5 – Comparison of Neural Network Predictions with 
Real Air Conditioner Control Modes

4. Architecture of the system

A modular structure for a centralized control 
system should be designed to accommodate future 
network expansion, which may be necessary based 
on the building’s evolving needs. It should also 
consider the installation and operational requirements 
of existing controlled equipment. Figure 6 illustrates 
a design consisting of three hierarchical levels, as 
outlined below, from the lowest to the highest level:

Level 1: Drive and data collection equipment 
(fi eld equipment).

Level 2: Automation controllers with 
communication interfaces—used in plumbing, 
electrical supply, air conditioning, and other 
applications including electrical panels, fi replaces, 
thermal power plants, ventilation units, etc.

Level 3: Centralized control station for the 
system: The SCADA system dispatcher.

Figure 6 – Architecture of the System

In this architecture, each piece of equipment 
or automated system can operate independently in 
its designated local control area (e.g. equipment 
installation). It is connected to the central 
dispatcher’s communication network for integration 
into the broader system. To be seamlessly 
integrated, local automation controllers must be 

equipped with communication interfaces. The use of 
specifi c protocols limits integration capabilities and 
incurs signifi cant additional costs for subsequent 
development/integration. On the other hand, the use 
of standardized communication protocols enables 
the possibility of further integrating new equipment 
or systems installed in future stages. This approach 
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enhances fl exibility and scalability while minimizing 
integration complexities and costs.

Communication between local controllers of 
various systems within the centralized control 
system (such as HVAC, healthcare, electricity 
supply, etc.) will be established through multiple 
networks, each operating in accordance with 
specifi c communication protocols (e.g., Modbus). 
These networks will be meticulously optimized to 
ensure maximum data transmission speed in the 
HVAC network, which encompasses components 

such as air purifi cation units, thermal power 
stations, central refrigeration units, ventilation 
convectors, as well as supply and exhaust 
ventilation systems.

5. Implementation of the system

The illustrated model for building automation 
using PLC and SCADA is depicted in Figure 7. This 
system comprises two fundamental components: 
hardware and software.

    

Figure 7 – Overview of the Control Box

The Model System’s hardware consists of a 
Siemens programmable logic controller (PLC), 
heat sensors of the PT 100 type, temperature, and 
humidity sensors, and a diff erential pressure sensor. 
The PLC and SCADA programming, developed for 
real-time process monitoring and remote system 
control, enable the operation of the Model System 
through the PLC in accordance with the developed 
algorithms. This control is managed by the central 
computer connected to the system. To program the 
PLC utilized in the Model System, the Regulator 

Development System editor was employed, as 
displayed in Figure 8.

The Model System’s PLC software includes 
automation for HVAC, humidity regulation, alarm 
systems, and the main software overseeing these 
subprograms. The system’s control structure is 
depicted in Figure 9, comprising actuators, a control 
panel with a connection module and controller, 
sensors, and an information system (system cloud, 
smartphone, and web-based monitoring and control, 
notifi cations via email and Telegram).
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Figure 8 – Overview of the PLC

Figure 9 – Control Structure Overview for Model System

SCADA programming was developed to 
facilitate real-time control of the designed model 
system, ensuring continuous data collection, 
assessment, and ongoing management. The SCADA 
editor was employed for the creation of this software.

Within the software created using the SCADA 
editor, the points utilized in the model system were 
initially established using the Modbus protocol. 

Figure 10 illustrates the HVAC page, which 
encompasses features for monitoring, control, 
heating, and cooling operations.

The fi nal stage of system implementation is 
system testing. Figure 11 displays real-time data 
obtained from temperature and humidity sensors, 
which play a crucial role in aiding the intelligent 
system in decision-making and parameter regulation.
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Figure 10 – Visualization in SCADA

Figure 11 – Monitoring the System from a Smartphone
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6. Results and Discussion

In this chapter, we present the outcomes of 
our study on the development and implementation 
of an intelligent HVAC system. This system 
incorporates an intelligent decision-making module 
for the precise regulation of specific parameters. The 
system utilizes Siemens controllers, temperature 
and humidity sensors, air conditioning units, and the 
SCADA monitoring program. Before delving into 
the results, let’s briefly recap the architecture of our 
intelligent HVAC system. It comprises several key 
components:

Siemens Controllers: These programmable logic 
controllers (PLCs) serve as the brain of the system, 
responsible for executing control algorithms.

Temperature and Humidity Sensors: PT 100 
type heat sensors and DWYER RHP-3W44-LCD 
heat and humidity sensors provide crucial data 
inputs to the system.

SCADA Monitoring Program: The SCADA 
software offers real-time monitoring and control 
capabilities, enabling continuous data collection and 
evaluation.

Our system successfully achieved real-time 
process monitoring, allowing us to gather data and 
evaluate the performance of the HVAC system under 
various conditions. The integration of temperature 
and humidity sensors provided accurate and timely 
data inputs. The remote control capability of the 
system allowed us to adjust HVAC parameters 
remotely. This functionality proved highly valuable 
for optimizing the indoor environment, particularly 
in response to shifting external conditions. The 
intelligent decision-making module demonstrated 
its effectiveness in regulating specific parameters. It 
utilized data from the sensors and executed control 
algorithms to maintain a comfortable and energy-
efficient indoor environment.

One of the primary achievements of our study 
is the improved performance and efficiency of the 
HVAC system. By utilizing real-time data and the 
decision-making module, the system effectively 
balanced heating, cooling, and humidity control, 
resulting in enhanced comfort and reduced energy 
consumption. The ability to remotely control 

and monitor the HVAC system opens up new 
possibilities for building management and energy 
optimization. This feature is especially beneficial 
in scenarios where immediate adjustments are 
required. Our modular system architecture allows 
for future expansion and integration with additional 
components or systems. This scalability ensures the 
system can adapt to evolving building requirements 
and technological advancements.

7. Conclusion

In this study, we have endeavored to design, 
develop, and implement an intelligent HVAC 
system with a focus on precision, efficiency, and 
remote accessibility. The system incorporates 
Siemens controllers, temperature and humidity 
sensors, air conditioning units, and the SCADA 
monitoring program.  Beyond the immediate scope 
of HVAC control, our research points to broader 
possibilities in intelligent building management. 
The remote accessibility of our system empowers 
facility managers, engineers, and building owners 
to exercise precise control over environmental 
parameters, even from remote locations.

In summary, our study underscores the potential 
for innovation in building automation. The fusion 
of advanced hardware, intelligent decision-making, 
and real-time monitoring has yielded a system that 
not only optimizes building conditions but also 
promotes energy conservation and sustainability. As 
we move forward, we anticipate further refinements 
and applications of this technology, ultimately 
shaping a future where buildings are not merely 
structures but dynamic, adaptable ecosystems that 
respond intelligently to the needs of their occupants 
and the environment.
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