
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №3 (1) 2023 https://jpcsip.kaznu.kz

© 2023 Al-Farabi Kazakh National University 12

IRSTI 28.23.29 https://doi.org/10.26577/1i32jpcsit2302

S.D. Aitzhanov , N.M. Kazyieva , N.А. Burambaeva ,

Z.B. Shuren* , A.A. Aikeyeva
L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

*e-mail: adai_zhazi@mail.ru

APPLICATION OF FACENET MACHINE LEARNING MODEL
AND HAAR CASCADE CLASSIFIER
FOR BIOMETRIC IDENTIFICATION

Abstract. The paper analyzes the principles of Haar cascade classifier and FaceNET machine learn-
ing simulation program for biometric identification. As an experiment, a recognition system was created
that will allow human face recognition, which was developed in the Python programming language.
Some libraries covered in the research process include numpy, OpenCV, pip, matplotlib, virtualenv and
pickle. The Haar cascade classifier is used to detect objects in images and videos. For the process of
generating a facial signature, the two programs used the FaceNET machine learning model, which uses
convolutional neural networks in the process of extracting features from facial images and conducting a
comparative analysis of them between the identification data and those stored in the database. Due to
this, FaceNET identifies faces in images with high accuracy and security, which is useful for use in access
control systems, automation of visitor accounting processes and other applications where facial recogni-
tion is necessary. The created system will provide an opportunity to recognize unique facial features,
store them and link them with the user’s documentary information.

Key words: biometric identification, machine learning model, facial image, Haar cascade classifier,
face signature.

1. Introduction

Biometric methods, while being an effective
means of protecting information, have risks
associated with their use, such as imperfect scanning
technologies, the possibility of theft and tampering
of biometric information or photos, and many others
[1, 2].

To solve the security problem and improve the
performance of biometric methods, more and more
researchers are applying neural networks.

The proposed architecture is based on
convolutional layers, as convolutional neural
networks have high accuracy and robustness to
various distortions when applied in the field of facial
biometrics. As an example, a system is developed
to perform human face recognition. The created
program has a small code size in Python language.
The developed system uses FaceNET machine
learning model and Haar cascade classifier, which
are based on deep neural networks that allow
face detection and recognition. The application
of convolutional neural networks is necessary to
extract facial features from images. These features
are high dimensional vectors that describe the

unique characteristics of each face and allow for
comparative analysis of two faces to determine if
they belong to the same person.

The model utilizes a training method called
“one-shot learning”, which allows training with
the smallest number of images, i.e., one image
is sufficient. This model can be implemented
using small computational resources. The Python
language and some number of defined programs
are used to implement this program. These
include numpy, OpenCV, Jupyper Notebook, pip,
matplotlib, virtualenv, and pickle. With a number
of specific operations performed, virtualenv must
be installed and run, as this program will allow
you to create a virtual environment for OpenCV.
Next, a virtual environment, named as OpenCV,
was created and activated for use. Activation
is performed by a bat-file located in the Scripts
directory of the created OpenCV virtual
environment. The numpy program was installed
next, followed by the OpenCV library itself
and the Jupyter Notebook program. The library
provides image-processing capabilities, and the
program is an interactive notepad that allows you
to work with many runtime environments.

https://doi.org/10.26577/1i32jpcsit2302
https://orcid.org/0000-0002-5780-8583
https://orcid.org/0000-0002-7559-1795
https://orcid.org/0000-0003-3029-6474
https://orcid.org/0000-0003-3726-7131
https://orcid.org/0000-0002-2779-2509

13

S.D. Aitzhanov et al.

2. Applications of the Cascade Haar Classifier

The input of the FaceNET machine-learning
model is faces of size 160*160 pixels. The FaceNET
system is capable of outputting 128 values, which
are individual indicators of features unique to that
face. In the case of an available photograph of a face
in a different perspective, these values may differ,
but not significantly, giving the same selection of
outputs with almost identical numbers. The resulting
128 values are a face «signature» that is unique
to each face. The input photo has not only a face
image, but may also contain other objects and faces,
or will have no face at all. Therefore, a procedure
is needed to detect faces in the images, which leads

to the need for a cascaded Haar classifier. Given an
image as input, the classifier allows to determine
the presence of faces, the location of a face and
the number of located faces. The Haar classifier
performs calculations by applying the so-called Haar
functions, which are calculations for contiguous
rectangular regions at a particular location in the
detection window. Also included in the calculation
process is summing the pixel intensities in
each region and calculating the distinguishing
characteristics between the sums. Currently, over
6000 features are correlated with the image and
based on the correlation between the image and the
features. Figure 1 shows an example of a general
representation of Haar classifier training.

Figure 1 – A general representation of the training of the Haar classifier [3]

The two-step process results in the creation of
two program codes for each step. The first program
is designed only for the creation of a database of
face signatures, while the second will allow the
recognition of all faces. The first stage involves the
collection of face images, followed by the creation of
a database based on the production of corresponding
“face signatures”. The goal of the first program is to
create a database consisting of signatures of the faces
we want to recognize. Having only one photograph
of each person is sufficient. By having more than
one photo of each person available, the accuracy can
be improved. The images are processed by a Haar
cascade classifier, followed by FaceNET, which
will produce «face signatures» that are stored in the
database. The number of face signatures required
directly depends on the number of face images of

different people. The size of 160*160 pixels is used,
as this size is the optimal size for model training.
A database can be stored in different types of file
formats and in this case, the database is saved in
picklefile format, in particular, this database is saved
as data.pkl. Figure 2 shows a schematic of signature
generation based on the input stock image [4].

The second step involves the code generation
process and consists of capturing an image from
the workstation camera, directing the input image
from the camera to the Haar cascade classifier,
feeding the transformed image to the FaceNET
model to generate a signature unique to that person.
This signature of the face is compared with already
existing records in the database. Figure 3 shows the
scheme of face signature generation based on the
input image from the camera.

14

Application of facenet machine learning model and haar cascade classifier for biometric identification

Figure 2 – Scheme of face signature formation on the basis of input stock image

Figure 3 – Scheme of face signature generation based on the input image from the camera

Frobenius norm is applied to compare face
signatures. In this case, each signature has 128
numerical values and can be represented as a vector
with 128 numerical values. The NumPy library has
many other functions for working with matrices
and their norms. This library provides possibility
to compute Frobenius norms for several matrices
simultaneously. When applying the FaceNET model,
a vector of 128 numerical values is formed, which
provides a description of the unique characteristics
of a given face in the image, and the values of the
vector can have both positive and negative values,
and their interpretation in most cases does not
make physical sense. The process of generating 128
values when applying the FaceNET model consists
of 3 steps:

- The face image is fed to the input of the
FaceNET machine learning model;

- FaceNET machine learning model performs
image processing and returns a vector of numerical
values of length 128;

- The obtained vector is a «face signature» for
the person whose image was fed to the input of the
FaceNET machine-learning model.

Figure 4 shows a fragment of the generated 128
numerical values of the «face signature» [5].

The values in the database are labeled as
«signatures» for simplicity, and the values obtained
during the processing of the camera image are
named as «value» and the norm value is N. The
following method is applied for calculation as given
in formula 1:

,(1)

where N is the Frobenius norm.
This number is the norm that is applied to find

which of the face «signatures» of the database is
similar with the «value». And the calculations go
accordingly with the arrangement of values, i.e.
the first value of «signature» with the first value of
«value». Based on these calculations it is possible
to determine the smallest value of the norm, which
is the correspondence for the signature from the
database with the signature from the camera input
image.

15

S.D. Aitzhanov et al.

Figure 4 – Fragment of 128 numeric values of «face signature»

Features the first program that allows you to
create a database from stock images of faces. This
program is 1Signature.ipynb. Initially, a directory
with images of faces that are included in the
database is needed. It called «photosforfacenet». It
contains an image without a face to understand that
if there is no face, the value «unknown» should be
output. The number of face images depends on the
computing resources of the workstation. The face
image should be in the format “person’s name”.
png, because during face recognition the name of
the person is taken from the name of the image
peculiar to this person. Running the program

is accompanied by code to load libraries such
as os, PIL, numpy, matplotlib, pickle, cv2, and
keras_models. Libraries are necessary to support
the codes in a program. The os library provides
functionality in working with the operating system
to retrieve information about files in a directory.
PIL and OpenCV are Python image libraries used
for image processing in Python. The OpenCV
library is needed to retrieve the image from the
camera. The next step is to load the Haar cascade
classifier and FaceNET. Figure 5 shows the code
responsible for loading the Haar cascade classifier
and FaceNET [6].

16

Application of facenet machine learning model and haar cascade classifi er for biometric identifi cation

Figure 5 – Haar and FaceNET cascading classifi er download code

The haarcascade_frontalface_default.xml fi le
contains a pre-trained Haar classifi er for detecting
faces in the frontal position. This fi le is downloaded
from github.com and should be saved in the
directory with all fi les. All program fi les are located
in C:\Users\Admin\Documents\machinelearn\Face-
Recognition-with-FaceNET-main. In addition, you
need to download the fi le facenet_keras.h5 also via
github.com. After all the necessary models have been
loaded, it is necessary to proceed to the main code.
The directory with photos is assigned a variable,
which is specifi ed as an empty database. Next, a for
loop is used to repeat iterations equal to the number
of fi les in the photosforfacenet directory. For each
iteration a name is required, and it is taken from
the name of the fi le located in the photosforfacenet
directory. The above processes used the OpenCV
library, but the image codes that are in the code

apply the PIL format. The image layers in OpenCV
are composed of BGR and PIL is composed of RGB.
For this reason, the image is converted, turned
into an array and a cropping process is performed
based on x1, y1, x2 and y2. In the end, only the face
image should remain. The name of the converted
image is gbr. The face is then converted to an array,
followed by resizing the face 160*160 and another
conversion to an array. The image is then transmitted
to FaceNET. As a result, a signature is created and
stored in a «database» dictionary. Figures 6 and 7
show code fragments with detailed explanation of
the code lines.

Next, you need to save this database with face
signatures from this photosforfacenet directory to a
fi le named data.pkl. This fi le is saved in the directory
where the other fi les are located. For this purpose,
the code shown in Figure 8 is applied.

Figure 6 – The fi rst part of the code fragment of the 1Signature.ipynb program with comments

17

S.D. Aitzhanov et al.

Figure 7 – The second part of the code fragment of the 1Signature.ipynb program with comments

Figure 8 – Code for saving the data.pkl file

The next step is to create a second program
identical to the first one, but with some changes. In
the second program, an algorithm for recognizing a
face taken from a camera image is developed. The
number of libraries used is the same, code for loading
the Haar cascade classifier and FaceNET is added.
The next step is to add code to read the database
from the data.pkl file. The standard pickle library
has been applied for the file loading processes.
Since the image is taken from the workstation
camera, it is necessary to define the camera in the
code. The OpenCV library and the variable cap =
cv2.VideoCapture(0), where 0 is the camera used.
By default, the built-in camera is labeled with
the number 0. If there is another camera, you can
connect another camera by changing the value of 0
to another. Figure 9 shows the first part of the main
code of the second program [7].

This code runs until the Esc key is pressed to
terminate the program. The initial step is to capture
frames from the camera, then the next line of code
is similar to the line of code from the previous
program, which is responsible for loading the
Haar cascade image for face detection. The face is
detected, face location is determined, conversion
to PIL format is done, face-cropping operation is
performed and conversion to 160*160 pixels size

is done. Figure 10 shows the second part of the
second program [8].

To determine if the received signature from the
camera matches the signature from the database,
it is represented that the norm value between
«value» and «signature» will be 100, thus the loop
will iteratively read the signature in the «values»
database equal to the number of signatures in the
«signatures» database. The face identifier «identity»
will be left blank. This face identifier is necessary
for displaying on the video in the window. The value
«key» in the code corresponds to the person’s name
in the database dictionary, and in each iteration
process, «key» and «value» will be read. The next
line of code is responsible for calculating the norm,
the difference between «value» and «signature» and
its variable named as «dist». In case the value of dist
is less than 100, it will be recorded as a possible
match. «Key» will be written as «identity». The
process will repeat until the second signature in the
database and so on. This process will look through
all the signatures in the database to find a better
matching signature. When a matching signature is
found, that is the shortest distance, «identity» will
display the person’s face. The next step is to display
a rectangle around the person’s face and their name
[9].

18

Application of facenet machine learning model and haar cascade classifier for biometric identification

Figure 9 – The first part of the main code

Figure 10 – The second part of the program AitzhanovSerik.ipynb

19

S.D. Aitzhanov et al.

Figure 11 – Result of program execution

Final lines of code. The cv2.putText() function
allows you to output text per video frame and
takes a number of arguments. The frame of the
video on which the text is output is labeled as
gbr1, and the identity outputs the text in the frame.
The cv2.rectangle() function allows you to output
a rectangle per video frame. The cv2.imshow()
function displays the current video frame on the

screen. And the last function cv2.waitKey() waits
for a keyboard key to be pressed and returns
its code. If the Esc key is pressed, the loop is
terminated. Figure 11 shows the result of executing
this program [10].

3. Conclusion

The FaceNET model considered as an example
is one of the most efficient and accurate models
for face recognition based on deep learning. The
capabilities of the model where a single photo taken
by a camera is applied in the system are repeatedly
considered. As the number of single face images
increases, the accuracy rate increases. This study
demonstrates the working principle of FaceNET
model in practice using convolutional neural
network technology to extract facial features and
convert them into numerical vectors for comparison
and identification of individuals by face.

Funding

This study was funded by the Ministry of Science
and higher education of the Republic of Kazakhstan,
Grant No. AP19678000.

References

1. Anderson R. Security engineering: a guide to building dependable distributed systems. – John Wiley & Sons, 2020.
2. Tsutsui S. (ed.). Intelligent biometric techniques in fingerprint and face recognition. – Routledge, 2022.
3. Aditya Mittal. «Haar Cascades, Explained» Medium, https://medium.com/analytics-vidhya/haar-cascades-explained-

38210e57970d. Published December 21, 2020. Accessed April 11, 2023.
4. Schroff F., Kalenichenko D., Philbin J. Facenet: A unified embedding for face recognition and clustering //Proceedings of

the IEEE conference on computer vision and pattern recognition. – 2015. – С. 815-823.
5. Shetty A. B. et al. Facial recognition using Haar cascade and LBP classifiers //Global Transitions Proceedings. – 2021. – Т.

2. – №. 2. – С. 330-335.
6. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features //Proceedings of the 2001 IEEE

computer society conference on computer vision and pattern recognition. CVPR 2001. – Ieee, 2001. – Т. 1. – С. I-I.
7. E Woods R., C Gonzalez R. Digital image processing. – 2008.
8. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. – “ O’Reilly Media, Inc.”, 2022.
9. McKinney W. Python for data analysis. – “ O’Reilly Media, Inc.”, 2022.
10. Heaton J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning: The MIT Press, 2016, 800 pp, ISBN:

0262035618 //Genetic programming and evolvable machines. – 2018. – Т. 19. – №. 1-2. – С. 305-307.

