
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №2 (1) 2023 https://jpcsip.kaznu.kz

© 2023 Al-Farabi Kazakh National University 50

IRSTI 27.35.57 https://doi.org/10.26577/JPCSIT.2023.v1.i2.05

E. Makhmut* , T.S. Imankulov
Al-Farabi Kazakh National University, Kazakhstan, Almaty

*e-mail: erlanmahimut@gmail.com

COMPARATIVE ANALYSIS OF REDUCTION ALGORITHMS
IN CUDA FOR PRESSURE EQUATION

Abstract. This study aims to develop and analysis of different reduction algorithms in CUDA paral-
lel computing technology for calculating pressure distribution in porous media. The parallel model is
developed and enough to analyze a computation time of pressure. The main purpose of this study is a
comparative analysis of each reduction algorithm computing results on CUDA technologies, in order to
show the results of each reduction algorithm. The computing results of each reduction algorithms were
compared and analyzed.

Key words: Buckley–Leverett, water flooding, CUDA, reduction, GPU.

Introduction

In oil recovery engineering, using water flood-
ing, secondary recovery technique inject water into
oil reservoir has been becoming one of the most im-
portant techniques in EOR fields, which provides
40-60% recovered oil [1] , where water and oil are
immiscible. The special case of one-dimensional,
immiscible, two-phase flow was theoretically inves-
tigated in 1942 [2]. Water flooding process can be
seen mathematically using Buckley- Leverett mod-
el. Using the numerical approaches, the field will
be discretizing into several points. Large amount
of points will be used in order to obtain the conver-
gence solution. These points will increase compu-
tational cost, so in order to reducing the time com-
putational cost, the high performance computing
technology CUDA will be required.

CUDA (Compute Unified Device Architecture)
is a parallel programming model, which is a bridge
between CPU and GPU, not only responsible for to
transfer data, but also to realize the parallel com-
puting, because of GPU provides much higher in-
struction throughput and memory bandwidth. [3-7]
shows the information of the suggested optimization
and programming model for CUDA architecture. By
taking advantage of the throughput and low laten-
cy of GPU, like other applications, in oil reservoir
fields have attempted to increase the speedup of
their computations. In [8] developed a parallel algo-
rithm using CUDA technology for three-dimension-
al modeling for the reservoir. In [9] authors made
comparative analyses of execution time for three-
dimensional Poisson equation, and concluded that
using a mobile device is possible to conduct com-

putations of complex mathematical models in real
time. Paper [10] presented a parallel implementation
for a Forward Reservoir Simulation (FRS). As the
result of the work, the proposed model proves that
the CUDA-based parallel simulator implementation
of FRS enables solving an 82 times larger problem
than the serial one.

In [11], the authors developed a parallel model
for the Kahan Summation algorithm using CUDA
parallel reduction methods. The results demonstrat-
ed that optimizing the algorithm led to a decrease in
execution time and an increase in speedup.

Paper [12] investigated parallel data process-
ing in a hybrid CPU+GPU system, utilizing mul-
tiple CUDA streams to overlap communication and
computations. The paper analyzed the performance
and performance-to-power consumption ratio of
multi-stream data processing on modern multi-
core CPU+GPU systems. The authors obtained re-
sults that can be utilized for implementing building
blocks for data stream frameworks, particularly fo-
cusing on multi CUDA stream communication op-
timization.

In [13], the paper provided an overview of the
CUDA programming model, discussing concepts
such as threads, thread blocks, grids, and memory
hierarchy. It emphasized the importance of maxi-
mizing parallelism and exploiting memory band-
width to achieve optimal performance in CUDA
applications. The authors compared P systems with
other parallel paradigms and proposed simulating
parallel classical architectures using P systems. The
paper specifically focused on simulating the CUDA
architecture for solving the parallel reduction prob-
lem.

https://orcid.org/0009-0002-3451-415X
https://orcid.org/0000-0002-8865-3676
mailto:erlanmahimut@gmail.com

51

E. Makhmut, T.S. Imankulov

In [14], the paper presented an interesting in-
vestigation into parallel reduction operations and
proposed a GPU-based parallel approach to im-
prove their performance. The authors effectively
highlighted the significance of reduction operations
in various computational problems and provided a
clear explanation of the concept. The work achieved
a commendable 2.8x speedup compared to a serial
implementation, showcasing the effectiveness of the
presented approach.

In this work, to speed up of the application, used
different types of reduction algorithms in CUDA for
the computation of the maximum value of new and
old pressure, and analyzed the computation time and
speedup.

2 Mathematical model.
Water and oil are incompressible fluid in a po-

rous medium reservoir. Therefore, two phases (wa-
ter, oil) are considered in the model. Mass conserva-
tion equation for water and oil phases are following:

; (1)

; (2)

 (3)

where, m is porosity, and are oil and water
saturation, are velocity of water and oil. The
Darcy’s law expresses velocities:

 i=o,w. (4)

where, k is the absolute permeability, is the vis-
cosity of oil and water, is the relative perme-
ability expressed by following equations:

, . (5)

The pressure equation, expressed by equation
(1) and (2), is following:

 (6)

The initial condition at t=0 is given below:

 (7)

The boundary conditions:

 (8)

To solve the (1)-(8) system of equation, we con-
sidered the following assumptions:

	– The flow is linear, horizontal and of con-
stant thickness;

	– The flow is isothermal, incompressible and
obeys Darcy’s law;

	– Water and oil are immiscible;
	– Gravity and capillary pressure effects are

negligible;
	– The porosity is assumed constant;
	– The density of water and oil are negligible.

3 Numerical model.
The above mathematical model for oil displace-

ment is nonlinear. To solve pressure equation (6)
Jacobi method was used.

For pressure:

; (9)

where,

 = ; = ;

CUDA programming model for oil displace-
ment problem.

In this work, the CUDA technology is used for
the realizing of the parallelization. Figure 1(a) de-
scribe the process of initialization and call kernel.
The main problem of this step is that initialization
of device variables used for computation of pres-
sure. Firstly, define corresponding variables, and
then allocate memory for these variables. Second-
ly, copy the corresponding data from host to device
to be computationally amenable. One thing to note
that before “call kernel” operation, block number
and block size must be considered, it directly as-
sociated with the number of threads in the kernel. It
defined by following process, for one-dimensional
case:

dim3 threadsPerBlock(number_of_threads);
dim3 numBlocks((threadsPerBlock.x +N-1) /

threadsPerBlock.x);

52

Comparative analysis of reduction algorithms in CUDA for pressure equation

kernel<<< numBlocks, threadsPerBlock
>>>(parameters).

Thirdly, to call “kernel”, described in Figure
1(b). Finally, copy the result from device to host,
and output the result.

Once the “call kernel” function is connected,
the computation of pressure is implemented, as de-
scribed in Figure 1(b). In the “call kernel” function,
the following operation is realized:

1) For the control of an independent thread,
the global ID is calculated. As following equation:
global_id=threadIdx.x + BlockIdx.x*BlockDim +
GridIdx.x*GridDim.

2) For finding max value of pressure, the thread
ID is calculated, and the shared memory is defined.

3) The value of pressure in the new period is cal-
culated using equation (9).

4) The subtraction of new and old value of pres-
sure is calculated, and the result is saved in shared
memory for finding max value.

5) The max value in each block is calculated
using reduction algorithm.

6) The biggest max value of blocks is calcu-
lated using atomic operation.

7) The old pressure value is updated by new
pressure value.

8) The received biggest max value is compared
with computation accuracy, the computation cycle
(3)-(7) continues until the max is less than compu-
tation accuracy, otherwise the computation cycle
ends.

Figure 1(a) – CUDA-parallelization Figure 1(b) – The computation of pressure in
CUDA

Reduction algorithms in CUDA

In this model, it must be considered how to im-
plement the computation of the max value because

the reduction algorithm is used for this operation.
It is in some degree impact on the performance of
the CUDA application. How to strive to reach the
peak performance of GPU is related to choosing

53

E. Makhmut, T.S. Imankulov

the right metrics in CUDA, such as GFLOP/s for
compute-bound kernels or Bandwidth for memory-
bound kernels. Because of the reduction operation
have very low arithmetic intensity, it should strive
for peak bandwidth. In this work, different versions
of reduction is constructed, and that is present dif-
ferent performance concerns in CUDA. Each test
was performed on a GTX 1060Ti using CUDA 7.0
and a Linux operating system.

Figure 2 describes the detailed process of the in-
terleaved addressing method for parallel reduction.

The max data accessed by adjacent threads in the
block is evaluated. At the beginning, stride is 1, and
every thread will be attended to compute part of the
reduction. The value of stride will be doubled as fur-
ther steps are taken. With the increasing the value of
stride, the number of threads involved in the com-
putation was decreased. Although this reduction al-
gorithm enhanced the performance significantly, but
the problem is that there are not adjacent threads are
participated in the computation, it highly divergent,
and wraps are very inefficient.

Figure 2 – Interleaved addressing method using for the computation of max value of pressure

To avoid this problem, non-divergent branch is con-
sidered. Rather than the first reduction algorithm, this
approach is achieved that these adjacent threads are par-
ticipated in the computation, as you can see in Figure3,

in each step these threads ID is increased sequentially. In
some degree, it increased the performance, but the same
bank is visited by different threads at the same time,
which is called shared memory bank conflicts.

Figure 3 – Interleaved non-divergent addressing method using for the computation of max value of pressure

54

Comparative analysis of reduction algorithms in CUDA for pressure equation

The sequential addressing reduction algorithm
is successfully avoided this problem. Figure 4 il-
lustrates the process of this algorithm. Not only
these adjacent threads are participated, but also
these threads keep their id with the corresponding

memory address. For example, the first address is
visited by thread0, and the second address is visited
by thread1, and so on. This algorithm presented a
significant enhancement in the performance rather
than first one.

Figure 4 – Sequential addressing method using for the computation of max value of pressure

Even if it gives the higher performance from
the above illustrated algorithm, but these reduction
algorithms have low arithmetic intensity, and there
has a possible bottleneck is caused by instruction
overhead from the address arithmetic and loop. In
an inner loop, after the computation of the max val-
ue, synchronization operation is implemented. This
latency also causes the performance decrease. So
partial avoid synchronization, a method is consid-
ered that it only unrolls the last six iterations of the
inner loop, is called unrolling the last warp. Because
within a wrap, instructions are synchronous. With-
out unrolling, all wraps execute every iteration of
the loop and if statement.

The number of iterations is another important
element in reduction operation, if it is known before

the compile time, the above reduction algorithm
could be changed into complete unrolling. In mod-
ern GPU, the block size is up to 1024, fortunately.
Normally, block size is getting the value 8, 16, 32,
64, 128, 256, 512, and 1024, is sticking to power-
of-2 operation, and for a fixed size of block, com-
plete unrolling reduction is easily implemented. So,
the number of iteration must be fixed with the size of
block at compile time. This template supported by
NVIDIA CUDA programming technology.

Results

Table 1 shows the input parameters of CUDA
parallel model.

Table 1 – Parameters of model

Parameters Value
1 2

Absolute permeability 0.001
Water viscosity 0.09

Oil viscosity 0.3
Porosity 0.2

0.5

55

E. Makhmut, T.S. Imankulov

1 2
0.3

0.1

1.0

0.001

Execution time of serial model is shown in Table 2.
Execution time of serial model is shown in Table 2. Ex-

ecution time is increased as the number of points is in-
creased. These results are only used for the experiment.

Table 2 – Serial execution time (for pressure)

Number of element Execution time(s)
6.501

27.985

120.383

536.222

2221.43

10960

In this part, the performance of parallel ver-
sion of above reduction algorithms are present-
ed. In GPU device, when block size is 512, it
gives best result compared with other sizes (64,

128, 256, 1024). So, in this work, 512 block size
is used for all tests. Table 3 shows the execution
time of pressure using different reduction algo-
rithms.

Table 3 – The execution time of pressure used different reduction algorithm

Number
of

element

Interleaved addressing-
divergent

Interleaved
addressing – non

divergent

Sequential addressing Unroll last warp Complete unroll

Execution
time

Speedup Execution
time

Speedup Execution
time

Speed
up

Execution
time

Speedup Execution
time

Speed
up

2.076 3.1 2.075 3.1 2.061 3.2 1.893 3.43 1.898 3.43

6.439 4.3 6.345 4.4 6.306 4.44 5.663 4.94 5.631 4.97

23.35 5.2 22.84 5.3 22.90 5.3 20.34 5.92 20.17 5.97

92.04 5.8 91.39 5.9 90.32 5.94 80.69 6.65 80.04 6.7

373.5 6.0 368.7 6.03 366.9 6.05 325.2 6.83 322.25 6.90

749.2 14.6 718.6 15.25 711.9 15.4 654.9 16.74 643.9 17.0

56

Comparative analysis of reduction algorithms in CUDA for pressure equation

Figure 5 – Сomputation time serial and different types of parallel reduction algorithm

With the using of the different techniques of
threads in shared memory, the execution time is in-
creased, this case is presented in Table 3.

Figure 5 shows the parallel execution time
of CUDA using different types of reduction algo-
rithms, and 6 shows the speedup of these reduction
algorithms on computation of pressure.

To reach the peak performance of GPU, first,
it must be avoiding highly divergence of threads.

Secondly, as possible as to avoid bank conflicts in
the shared memory. Thirdly, as possible as to use
instruction within a wrap, because there is no any
__syncthreads() operation. Finally, to know how to
unrolling block sizes at compile time. These prob-
lems are solved systematically in this work, execu-
tion time is gradually reduced as shown in Figure
5, and speedup is gradually increased, as shown in
Figure 6.

Figure 6 – Speedup of each parallel reduction algorithm

57

E. Makhmut, T.S. Imankulov

Conclusions

In this work, for the oil displacement problem,
the Buckley-Leverett method is considered. For the
solution of numerical model, Jacobi method is ap-
plied. The serial and a high-performance computing
algorithm is created. We developed a high-perfor-
mance computing model using different reduction
algorithms in CUDA. The results of each reduction
algorithm is analyzed. The results show that the

execution time or speedup of model is affected by
the divergence of threads, bank conflicts, sequential
of threads, synchronization, and a compile time, as
shown in Table 3. With the increasing of the number
of points, the speedup of each parallel algorithm is
increased compared with serial one. Although the
difference of the result of execution time between
each reduction algorithm is very small, but these
improvements is also increased speedup of these re-
duction algorisms.

Reference

1.	 Willhite, G. Paul [1986]. “Waterflooding.”, Society of petroleum engineers, Richardson, TX, Textbook Series Volume, 3:
1-7.

2.	 Buckley, S.E. and Leverett, M.C. (1942), Mechanism of Fluid Displacement in Sands, Transactions AIME, Vol.146,
pp.107-116.

3.	 NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110, 2012, Available: http://www.nvidia.com/con-
tent/PDF/kepler/NVIDIA-KeplerGK110-ArchitectureWhitepaper.pdf.

4.	 N. Wilt, The Cuda Handbook: A Comprehensive Guide to GPU Programming, Pearson Education, 2013.
5.	 C. Nvidia, Programming guide, ed, 2008.
6.	 J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley

Professional, 2010.
7.	 D.B. Kirk, W.H. Wen-mei, Programming Massively Parallel Processors: A Hands-On Approach, Newnes, 2012.
8.	 Beisembetov, I. K., T. T. Bekibaev, B. K. Assilbekov, U. K. Zhapbasbayev, and B. K. Kenzhaliev. (2012) “High-perfor-

mance computing in oil recovery simulation based on CUDA.” Proceedings of 10th World Congress on Computational Mechanics.
Sao-Paulo, Brazil.

9.	 Akhmed-Zaki D.Zh., Daribayev B.S., Imankulov T.S., Turar O.N. “High-performance computing of oil recovery problem
on a mobile platform using CUDA technology”, Eurasian journal of mathematical and computer applications, Volume 5, Issue 2
(2017) 4 – 13.

10.	 Ayham Zaza, Abeeb A. Awotunde, Faisal A. Fairag, Mayez A. Al-Mouhamed. “A CUDA based parallel multi-phase oil
reservoir simulator”, Computer Physics communications (2016), http://dx.doi.org/10.1016/j.cpc.2016.04.010

11.	 Adityo Mahardito, Adang Suhendra, Deni Tri Hasta. “Optimizing Parallel Reduction In Cuda To Reach GPU Peak Per-
formance Optimizing Parallel Reduction In Cuda To Reach GPU Peak Performance”, Gunadarma University Repository(2018),
oai:repository.gunadarma.ac.id:722

12.	 Paweł Czarnul, “Investigation of Parallel Data Processing Using Hybrid High Performance CPU + GPU Systems and
CUDA Streams”, Computing and Informatics, Vol. 39, 2020, 510–536, doi: 10.31577/cai_2020_3_510

13.	 R. Ceterchi, M. Angel Martínez-del-Amor, and M.J. Pérez-Jiménez. “The Reduction Problem in CUDA and Its Simulation
with P Systems”, Research Group on Natural Computing (2014).

14.	 Walid Jradia, Hugo do Nascimento and Wellington Martins. “A Fast and Generic GPU-Based Parallel Reduction Imple-
mentation”, Symposium on High Performance Computing Systems (WSCAD) (2018).

