
ISSN 2958-0846 eISSN 2958-0854 Journal of Problems in Computer Science and Information Technologies №1 (3) 2025 https://jpcsip.kaznu.kz

© 2025 Al-Farabi Kazakh National University 25

IRSTI 28.27.15 https://doi.org/10.26577/jpcsit20253103

Mukhit Zhanuzakov1,* , Gulnar Balakayeva1 , Paul Ezhilchelvan2

1Аl-Farabi Kazakh National University, Almaty, Kazakhstan
2Newcastle University, Newcastle upon Tyne, United Kingdom

*e-mail: zhanmuha01@gmail.com

MODEL BASED SOLUTION FOR COMPUTING CHECKPOINTING
INTERVAL FOR FAULT-TOLERANT ROLLBACK-RECOVERY

IN ENTERPRISE SERVERS

Abstract. Recently, reliable information processing has become a relevant topic with the increase
of digitalization. It is especially essential for enterprises that process huge amounts of data every day.
These processes require stability and reliability as their interruption might lead to various security issues.
In order to tackle this, there are fault-tolerance algorithms that are specifically designed to prevent or re-
cover faults. This paper focuses on developing a heuristic solution to find optimal checkpointing interval
for rollback-recovery fault-tolerance algorithm. The authors propose a model based solution that utilizes
CPU capabilities to determine how often checkpointing should be taken for reliable information pro-
cessing. This research provides statistics and predictions from major research organizations, highlighting
the relevance of the topic. Paper also reviews related work devoted to this area of research, providing
comparisons and an overall analysis. The results of the work show that the proposed calculation method
introduces minimal performance overhead, averaging 0.04 seconds to the average service time, while
maintaining fault tolerance of the process. Authors indicate that this solution is suitable for proof-of-
concept systems to efficiently determine optimal interval for checkpointing.

Key words: checkpointing, fault-tolerance, enterprise, heuristic solution, application, rollback-re-
covery.

IRSTI 28.27.15
 https://doi.org/10.26577/jpcsit20253103

Mukhit Zhanuzakov1,* , Gulnar Balakayeva1 , Paul Ezhilchelvan2

1Аl-Farabi Kazakh National University, Almaty, Kazakhstan
2Newcastle University, Newcastle upon Tyne, United Kingdom

*e-mail: zhanmuha01@gmail.com
model based solution for computing checkpointing interval for fault-tolerant rollback-recovery

in enterprise servers
Abstract. Recently, reliable information processing has become a relevant topic with the increase of

digitalization. It is especially essential for enterprises that process huge amounts of data every day. These
processes require stability and reliability as their interruption might lead to various security issues. In order
to tackle this, there are fault-tolerance algorithms that are specifically designed to prevent or recover faults.
This paper focuses on developing a heuristic solution to find optimal checkpointing interval for rollback-
recovery fault-tolerance algorithm. The authors propose a model based solution that utilizes CPU
capabilities to determine how often checkpointing should be taken for reliable information processing. This
research provides statistics and predictions from major research organizations, highlighting the relevance
of the topic. Paper also reviews related work devoted to this area of research, providing comparisons and
an overall analysis. The results of the work show that the proposed calculation method introduces minimal
performance overhead, averaging 0.04 seconds to the average service time, while maintaining fault
tolerance of the process. Authors indicate that this solution is suitable for proof-of-concept systems to
efficiently determine optimal interval for checkpointing.

Key words: checkpointing, fault-tolerance, enterprise, heuristic solution, application, rollback-
recovery.

1. Introduction

Currently, reliable information processing is

becoming relevant with the increase of digital
information. The increase in the volume of digital
information was due to the exponential growth of
data mining and the widespread introduction of
digital technologies. In 2024, more than 463
exabytes (1018 bytes) of data are estimated to be
generated worldwide every day.

Almost all information is processed on servers.
According to researchers [1], the enterprise server
market is projected to be USD 87.96 billion in
2024 and USD 129.42 billion by 2029, an average
increase of 8.03% during the forecast period (2024-
2029). Figure 1 shows this data in a graph format
for clear understanding.

Enterprise servers are crucial indicators of a
country's level of digitalization. Figure 2 displays
growth of enterprise server market by regions. We

can see that most developing countries in Asia and
Australia show high increase in enterprise server
market including Kazakhstan. This suggests that
the relevance and importance of the reliable
enterprise servers in these regions will increase as
well.

Enterprise servers can fail while processing any
information, leading to data loss and disruption of
the entire system. Other researchers from Uptime
Institute [2] analyzed outage of servers from 2021
to 2023. An outage is a period of time when a
computer system, service, network, or
infrastructure is unavailable or not functioning
properly. Figure 3 shows that according to their
research, average cost per outage increased from
100 000 USD to 200 000 USD during the
examined period. Therefore, it is very important for
enterprise systems to have methods and techniques
that increase the system's resistance to
failures.

https://doi.org/10.26577/jpcsit20253103
https://orcid.org/0000-0003-0001-8422
https://orcid.org/0000-0001-9440-2171
https://orcid.org/0000-0002-6190-5685

26

Model based solution for computing checkpointing interval for fault-tolerant rollback-recovery in enterprise servers

Figure 1 – Enterprise Server Market size predictions

Figure 2 – Enterprise server market growth rate by region

Figure 3 – Average cost per server outage

27

M. Zhanuzakov et al.

Figure 1 – Enterprise Server Market size predictions

Figure 2 – Enterprise server market growth rate by region

Figure 3 – Average cost per server outage

A popular solution for handling faults and
malfunctions is the integration of fault-tolerance
algorithms. Fault tolerance is the ability to
eliminate unexpected malfunctions that occur
during the operation of the system [3]. Using fault
tolerance algorithms, one can achieve reliable
operation of the entire system. This is especially
important for enterprise information systems that
are highly dependent on the operation of servers
and perform high computing processes that require
high availability.

Rollback-recovery algorithm is one of the fault-
tolerance algorithms that allows to recover the
server/system to a consistent state using
checkpointed states called “checkpoints”. These
checkpoints are stored in stable storage [3]. One of
the hyperparameters of the algorithm is
checkpointing interval, that is how often
checkpointing should be taken. In this work, we
aim to compute the optimal interval between each
checkpoint while maintaining minimal impact on
performance.

2. Related work

In this section, we gathered and reviewed

different works related to fault-tolerance algorithms
with checkpointing nature.

Yishu et al. [4] addresses the challenge of
protecting iterative applications from fail-stop
errors. Authors achieve this by developing an
optimal checkpointing strategy. The idea of the
works is to execute a series of iterations, each
comprising multiple tasks with varying execution
times and checkpoint costs. The authors propose a
dynamic programming algorithm to compute the
optimal checkpointing pattern. The results
demonstrate that a globally periodic strategy can
outperform traditional methods, such as
checkpointing after each task or at the end of each
iteration.

Research by Jayasekara et al. [5], discusses the
inefficiencies of traditional single level

checkpointing in stream processing platforms. The
authors propose a theoretical framework for a
multi-level periodic checkpointing system, where
at each checkpoint interval, a specific level is
selected probabilistically. They derive optimal
checkpoint intervals and associated probabilities by
considering factors such as failure rates, checkpoint
costs, restart costs, and potential failures during
recovery at each level.

Another research by Hérault et al. [6], outlines
the challenge of input/output (I/O) contention in
high-performance computing (HPC) environments,
where multiple applications compete for limited
I/O bandwidth. The authors propose a cooperative
scheduling policy that optimizes the overall
performance of concurrently executing
checkpoint/restart-based applications sharing I/O
resources. They develop a theoretical model and
derive necessary constraints to minimize global
waste on the platform. Their findings indicate that
combining optimal checkpointing periods with I/O
scheduling strategies can significantly improve
overall application performance.

Research by Ezhilchelvan el al. [7] examines
a server subject to random breakdowns and
repairs, providing services to incoming jobs with
highly variable lengths. The study focuses on
implementing a checkpointing policy aimed at
mitigating potentially lengthy recovery periods
by periodically backing up the current state. The
authors analyze a general queuing model that
incorporates breakdowns, repairs, backups, and
recoveries to determine optimal checkpointing
intervals that enhance performance. They derive
exact solutions under both Markovian and non-
Markovian assumptions. Through numerical
experiments, the paper illustrates conditions
under which checkpoints are beneficial and
quantifies the achievable advantages in such
scenarios.

Overall works [4] – [7] are analyzed and
compared with our work. The results of the
comparisons are shown in Table 1.

28

Model based solution for computing checkpointing interval for fault-tolerant rollback-recovery in enterprise servers

Table 1 – Comparison of related works

Work Overview Advantages Disadvantages
Yishu et al. introduce a mathematically optimized

checkpointing strategy for iterative
applications that experience fail-stop errors.

theoretical optimal
strategy, strong
mathematical solution

assumes controlled
conditions, less practical
application

Jayasekara et al. implements a multi-level checkpointing
approach for exascale systems, optimizing
failure recovery through adaptive interval
selection.

advanced exascale
optimization, multi-level
fault tolerance

limited to exascale systems,
complex to implement

Hérault et al. proposes a scheduling algorithm that
provides an optimal checkpoint period to
maximize overall platform throughput.

efficient scheduling
algorithm, considers
bandwidth constraints

limited to shared HPC
environments, complex
deployment

Ezhilchelvan et al. introduces optimal checkpointing strategies
for systems with task variability and random
failures

strong theoretical model
based on queuing theory

requires predefined failure
and repair rates

Our work provides a heuristic solution for computing
optimal checkpointing interval

practical approach, good
for proof-of-concept
systems

lack of theoretical
optimization

Overall, the reviewed authors have provided

good theoretical solutions for checkpointing-based
approaches. The main difference between our work
and these works is that our solution is more
practical with a focus on real-life applications.

3. Methodology

To achieve consistency of data processed

during process execution, we use a rollback-
recovery algorithm. This algorithm mainly works
using “checkpoints”.

The idea of a checkpointing is to periodically
store the state of a computation in stable storage [8]
– [10]. Checkpoints are established while the
process is running without failure. This saved state
can be used to restart the process, rather than
completely restarting the process, which would
involve lengthy, repetitive processing and repeated
output.

Problem identification
The main question here will be to find the

optimal interval for taking these control points.
Because taking checkpoints too often will increase
overhead and response time during uptime periods
and will require larger storage capacity. On the
other hand, if the checkpointing is performed less
frequently, the rollback duration must be long,
which subsequently increases the duration of
service unavailability after a failure. Thus, the
effectiveness of the system's fault tolerance will
decrease.

The ideal way to calculate the optimal check
interval is to estimate it by simulating the system

along with all relevant parameters, which include
the request arrival rate, server processing speed,
server failure probability, etc. Such modeling work
has been extensively done by many authors [11] –
[16]. This ideal way of determining the optimal
interval is not feasible when we are prototyping a
proof-of-concept system because the corresponding
values for all model parameters are unknown.
Therefore, we decided to estimate the checkpoint-
ting interval heuristically, as described below.

Heuristic solution
Intuitively, the frequency of checkpointing will

depend on the average execution of the process as
well as on the frequency of the CPU. This is
because: more processor power means shorter
execution times. This is derived from fundamental
computer architecture and performance modeling
equations by John L. Hennessy et. al. [17].

Equation 1.
The equation by John L. Hennessy et. al.

describes how total execution time is inversely
proportional to the CPU frequency, if we assume
the number of instructions and cycles per
instruction (CPI) remain constant.

T = 𝐼𝐼𝐼𝐼∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼

𝑓𝑓𝑓𝑓 (1)
Where:
T = total execution time
I = number of instructions
CPI = cycles per instruction
f = CPU frequency (gigahertz)
This was based on fundamental principles

established by computer architects and engineers

29

M. Zhanuzakov et al.

over decades, including Amdahl’s Law [18] and
pipelining concepts in modern CPUs. Using this
model, we propose a solution for calculating
checkpointing interval that is based on CPU
frequency and mean execution time.

Definition 1. Tc is the time in seconds between
two checkpoints during a fail-free computational
process.

Definition 2. The mean execution time 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝
refers to the average time required to complete a
given computational process on a single-threaded
CPU. It is calculated as the difference between the
total area of the cumulative distribution function
(CDF) and the area under the CDF.

Definition 3. CPU frequency – f defines how
many cycles per second the CPU can execute in
gigahertz. This parameter varies depending on CPU
of each individual server.

Equation 2.
We use the following Equation (1) to determine

the checkpointing interval (Tc):

𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝
𝑓𝑓𝑓𝑓 (2)

Where:
Tp= mean execution time on a single threaded

CPU (seconds)
f = CPU frequency (gigahertz)

The higher CPU frequency the lower

checkpointing interval value. Subsequently, lower
checkpointing interval means more checkpoints can

be established during processing with minimal
impact on performance.

Equation 3.
The area under the CDF is computed using the

Trapezoidal Rule:

area under CDF =
 ∑ (hi+hi+1)

2
N−1
i=1 ∗ (xi+1 − xi) (3)

Where:
hi = i-th height of trapezoid
xi = i-th width of trapezoid
N = total number of trapezoids

This method ensures a fast and accurate

approximation of execution time probabilities over
time. CDF will also be used to evaluate the
effectiveness of checkpointing in the next sections.

Equation 4.
Tp is calculated using the following equation:

 Tp = total area CDF – area under CDF (4)

Where:
Total area CDF represents the longest

execution time.
The area under the CDF is the result of

Equation (3).
The above Equations (2)-(4) are coded in

python and can be used to calculate checkpointing
interval (see Listing (1)).

Listing 1: Code for checkpointing interval calculation
1: import pandas as pd
2:
3: response_times = […]
4:
5: def calc_probabilities(arr):
6: df = pd.DataFrame(arr)
7: df = df.rank(method='max') / len(df)
8: return df[0].tolist()
9:
10: def calc_area(h1, h2, x1, x2):
11: delta_x = x2 – x1
12: avg_h = (h1 + h2) / 2
13: return avg_h * delta_x
14:
15: def find_area_under_cdf(x_arr, y_arr):
16: res_area = 0
17: for i in range(len(x_arr)):
18: if (i == len(x_arr) – 2):
19: break
20: res_area += calc_area(y_arr[i], y_arr[i + 1], x_arr[i], x_arr[i + 1])
21: return res_area

30

Model based solution for computing checkpointing interval for fault-tolerant rollback-recovery in enterprise servers

22:
23: def compute_Tp(total_area_CDF, area_CDF):
24: return total_area_CDF – area_CDF
25:
26:
27: def compute_checkpoint_interval(T_p, f):
28: return T_p / f
29:
30:
31: probabilities = calc_probabilities(response_times)
32: area_CDF = find_area_under_cdf(response_times, probabilities)
33: total_area_CDF = response_times[len(response_times) – 1]
34: T_p = compute_Tp(total_area_CDF, area_CDF)
35: optimal_checkpointing_interval = compute_checkpoint_interval(T_p, 2.7)

Overall, this solution is aimed at providing

basic checkpointing implementation for
applications that are less prone to long term breaks
as the solution is not theoretically optimal.
However, this should be enough for small to
medium-sized enterprises with limited technical
capabilities and specialists.

4. Results and discussions

To validate the effectiveness of purposed

method, we run simulations of process executions
with and without checkpointing to see how much
overhead it adds to the processing time. As a
testing environment we have two servers with

2.70GHz CPU each. As a testing process we have
selected is document template generation process.
It includes .word file generation with text input in
the contents of the file and converting it to .pdf file
that contains QR code of digital signature.

To compute average execution time on a single
threaded CPU, we created script for the proposed
process in Python. Then, we run the program for
400 time to find Tp. Using the results, we plotted
CDF (Cumulative Distribution Function) of
execution times (see Figure 4). After this, we
calculated mean execution time using Equation 4.
The result was 0.52 seconds. After that we used
Equation 2 to calculate checkpointing interval,
which resulted in 0.09 seconds.

Figure 4 – CDF of execution times

After calculating the checkpointing interval, we
can start utilizing it for recovery. To test how
checkpointing can impact performance when server
breaks down, we implemented testing scenario that

will crash our application at random moment
during execution and perform recovery. In the first
case, we do not utilize checkpointing. In the second
case we use the checkpointing using our calculation

31

M. Zhanuzakov et al.

model. In both cases, the process is recovered in
another server using rollback-recovery algorithm.

Figure 5 shows CDF of execution times with
and without checkpointing when simulated cash
occurs. The total number of repetitions was 400 for
each case. As a result, when checkpointing is used
most processes are completed under 500

milliseconds. This compares with almost 950
milliseconds in case of no checkpointing.

To show how much overhead is added after
enabling checkpointing, we run the testing process
again with checkpointing in a crash free
environment. Figure 6 displays CDF of execution
times with and without checkpointing.

Figure 5 – CDF of execution times with and without checkpointing
in a crash simulation environment

Figure 6 – CDF of execution times with
and without checkpointing in a crash free environment

32

Model based solution for computing checkpointing interval for fault-tolerant rollback-recovery in enterprise servers

As seen in Figure 6, checkpointing adds small
overhead to the execution duration, increasing
mean execution time by only 0.04 seconds. Note
that without checkpointing, upon failure, process
would be restarted from the very start and the
service time of the process would be a lot higher as
seen in Figure 5.

5. Conclusion and future work

The research conducted in this article is very

relevant and in demand at the present time. The
huge increase in the load on servers leads to
unwanted failures in the operation of corporate
servers, which significantly interferes with the
successful and reliable operation of enterprises

In this work we carried out research on
developing a heuristic solution for calculating
optimal checkpointing interval for well-known
rollback-recovery method. We used CPUs
capability and mean execution time of process to
calculate the checkpointing interval. During our
research, we found out that the method greatly
improves the performance of applications in a
failure scenario, while adding tiny overhead to the
performance (0.04 seconds) in a crash-free
scenario. By applying this method, small/medium
enterprises can easily find the checkpoint interval
and use the rollback-recovery method to ensure
reliability.

Currently, this solution is experimentally
proven to be effective in an environment that is less
prone to errors. The limitation of the work is the
absence of theoretical optimization for long-term
applications. This can be future research topic for
our team.

Another future direction of this work can be the
performance evaluation of the proposed solution in
different workloads such as multi-threaded CPUs
and distributed systems.

Funding

This research received no external funding

Author Contributions

Conceptualization, M.Z. and G.B.;

Methodology, M.Z.; Software, M.Z.; Validation,
G.B. and P.E.; Formal Analysis, G.B. and P.E.;
Investigation, G.B. and M.Z.; Resources, G.B. and
M.Z.; Data Curation, M.Z.; Writing – M.Z.;
Writing – Review & Editing, G.B. and P.E.;
Visualization, M.Z.; Supervision, G.B. and P.E.;
Project Administration, G.B.; Funding Acquisition,
M.Z. and G.B..

Conflicts of Interest

The authors declare no conflict of interest

References

1. Enterprise Server Market – Share, Trends & Analysis (Mordor Intelligence). Available:

https://www.mordorintelligence.com/industry-reports/enterprise-servers-market. Accessed: Feb. 2, 2025.
2. Uptime Institute, "Annual Outage Analysis 2023." Available: https://datacenter.uptimeinstitute.com. Accessed: Feb. 2,

2025.
3. R. Koo and S. Toueg, "Checkpointing and rollback-recovery for distributed systems," IEEE Transactions on Software

Engineering, vol. SE-13, no. 1, pp. 23-31, Jan. 1987, doi: 10.1109/TSE.1987.232562.
4. Y. Du, L. Marchal, G. Pallez, and Y. Robert, "Optimal checkpointing strategies for iterative applications," IEEE

Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 507-522, 2022.
5. S. Jayasekara, A. Harwood, and S. Karunasekera, "Optimal multi-level interval-based checkpointing for exascale stream

processing systems," arXiv preprint, arXiv:1912.07162, 2019.
6. T. Hérault, Y. Robert, A. Bouteiller, D. Arnold, K. Ferreira, G. Bosilca, and J. Dongarra, "Optimal cooperative

checkpointing for shared high-performance computing platforms," 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Vancouver, BC, Canada, 2018, pp. 803-812, doi: 10.1109/IPDPSW.2018.00127.

7. P. Ezhilchelvan and I. Mitrani, "Checkpointing models for tasks of different types," ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, vol. 9, no. 3, Article 10, pp. 1-23, Sep. 2024, doi: 10.1145/3658667.

8. P. K. Jaggi and A. K. Singh, "Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks,"
Journal of King Saud University – Computer and Information Sciences, vol. 27, no. 4, pp. 402-415, 2015.

9. S. Kumar T, M. HS, S. S. Mustapha, P. Gupta, and R. P. Tripathi, "Intelligent fault‐tolerant mechanism for data centers
of cloud infrastructure," Mathematical Problems in Engineering, vol. 2022, no. 1, p. 2379643, 2022.

10. M. Kirti, A. K. Maurya, and R. S. Yadav, "Fault‐tolerance approaches for distributed and cloud computing
environments: A systematic review, taxonomy and future directions," Concurrency and Computation: Practice and Experience,
vol. 36, no. 13, p. e8081, 2024.

33

M. Zhanuzakov et al.

11. X. Wang, C. Zhang, J. Fang, R. Zhang, W. Qian, and A. Zhou, "A comprehensive study on fault tolerance in stream
processing systems," Frontiers of Computer Science, vol. 16, pp. 1-18, 2022.

12. S. S. Nabavi and H. Farbeh, "A fault-tolerant resource locking protocol for multiprocessor real-time systems,"
Microelectronics Journal, vol. 137, p. 105809, 2023.

13. A. U. Rehman, R. L. Aguiar, and J. P. Barraca, "Fault-tolerance in the scope of cloud computing," IEEE Access, vol. 10,
pp. 63422-63441, 2022.

14. S. Khan, I. A. Shah, K. Aurangzeb, S. Ahmad, J. A. Khan, and M. S. Anwar, "Energy-efficient task scheduling using
fault tolerance technique for IoT applications in fog computing environment," IEEE Internet of Things Journal, vol. 11, no. 24, pp.
39009-39019, Dec. 15, 2024, doi: 10.1109/JIOT.2024.3403003.

15. P. Kumari and P. Kaur, "A survey of fault tolerance in cloud computing," Journal of King Saud University – Computer
and Information Sciences, vol. 33, no. 10, pp. 1159-1176, 2021, doi: 10.1016/j.jksuci.2018.09.021.

16. V. P. M and P. D, "Reactive fault tolerance aware workflow scheduling technique for cloud computing using teaching
learning optimization algorithm," 2023 Fifth International Conference on Electrical, Computer and Communication Technologies
(ICECCT), Erode, India, 2023, pp. 1-7, doi: 10.1109/ICECCT56650.2023.10179823.

17. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 5th ed. Elsevier, 2011. ISBN:
9780123838735.

18. G. M. Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," in Proc.
AFIPS Spring Joint Comput. Conf., New York, NY, USA, Apr. 1967, pp. 483–485. doi: 10.1145/1465482.1465560.

Information About Authors:
Mukhit Zhanuzakov (corresponding author) – PhD student at the Al-Farabi Kazakh National University, Faculty of

Information Technology (Almaty, Kazakhstan, e-mail: zhanmuha01@gmail.com).
Gulnar Balakayeva – Professor, Doctor of Physical and Mathematical Sciences at the Al-Farabi Kazakh National University,

Faculty of Information Technology (Almaty, Kazakhstan, e-mail: gulnardtsa@gmail.com).
Paul Ezhilchelvan – PhD at the Newcastle University, School of Computing (Newcastle upon Tyne, United Kingdom, e-mail:

paul.ezhilchelvan@newcastle.ac.uk).

