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TIME SERIES FORECASTING MODELS  
OF NON-SCHEDULED PASSENGER AIR TRANSPORTATION

Abstract. The change in the time series of non-scheduled passenger air transportation is random 
and variable, which creates a number of problems in forecasting the demand for this type of transporta-
tion. In calculations based on trend models, it is usually not possible to take into account all extraneous 
factors affecting non-scheduled passenger air transportation. For this reason, the accuracy and practical 
significance of the forecast are low. Considering the mentioned facts, this paper investigates the applica-
tion of combined autoregressive integrated moving average (ARIMA) and support vector machine (SVM) 
methods to improve the accuracy of charter air transportation demand forecasting. ARIMA and SVM 
models usually complement each other in forecasting due to their inherent characteristics. These features 
include detecting temporal dependencies and trends, as well as handling non-linear relationships within 
historical data. The integration of these methods aims to obtain optimal forecast results using the time 
series analysis of the ARIMA model and the non-linear relationship detection feature of the SVM model. 
The obtained results emphasize the ability of ARIMA-SVM models to adapt to the dynamic demand pat-
terns of non-scheduled air transportation and also offer a number of efficient ideas for the optimization of 
operational strategies and resource allocation in this field. The theoretical-practical results of this study, 
conducted with ARIMA and SVM methods, will be effective in the field of non-scheduled passenger air 
transportation.

Key words: non-scheduled air transportation, support vector machine, non-linear models, time-
series analysis, demand model.

1. Introduction

Non-scheduled air transportation, which in-
cludes charter flights and air taxis, experiences 
fluctuating demand influenced by a myriad of fac-
tors such as economic trends, seasonal variations, 
and sudden market shifts. Accurate forecasting in 
this context is crucial for optimizing resource al-
location, improving operational efficiency, and 
enhancing strategic planning. Among the various 
methods employed for time series forecasting, au-
toregressive integrated moving average (ARIMA) 
and support vector machine (SVM) stand out for 
their distinct advantages. ARIMA is well-regarded 
for its capability to model and forecast linear pat-
terns in time series data, making it a valuable tool 
for understanding underlying trends and season-
ality. On the other hand, SVM is a powerful ma-
chine learning technique that excels at capturing 
complex, non-linear relationships within data [1], 
[2], [3], [4], [5]. In this paper, the individual char-
acteristics and applications of ARIMA and SVM 
methods are examined in the context of forecasting 
non-scheduled passenger air transportation. By an-
alyzing historical data using these two methodolo-

gies separately, we aim to provide a comprehensive 
evaluation of their respective strengths, limita-
tions, and suitability for this particular forecasting 
challenge. Through empirical analysis, we seek to 
determine how each method performs under vary-
ing conditions and to what extent they contribute to 
enhancing the accuracy of demand forecasts in the 
non-scheduled air transportation field [5], [6], [7], 
[8], [9], [10], [11], [12].

2. Related works

Non-scheduled air transportation time series 
forecasting aims to forecast future data based on 
past data. When only one variable changes over 
time, a univariate prediction model is used. Multi-
variate time series forecasting is used when multiple 
variables and their values   change over time. 

Statistical models are used to forecast the de-
mand for air transportation. Data stationarity should 
be checked before statistical modeling is performed. 
The main reason is that statistical variables (mean, 
variance, and autocorrelation) should not change 
over time. Examples of these models are statistical 
models such as Auto-Regressive Integrated Moving 
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Average (ARIMA) and SARIMA [13], [14], [15]. 
In the mentioned models, trend and seasonal factors 
are included in the time series data.

The application of time-series-based forecasting 
models poses certain difficulties due to the increased 
uncertainty and irregularity in the movement of air 
passengers. Sun et al. [4]-[5] proposed a nonlinear 
vector auto-regression neural network (NVARNN) 
method to predict passenger capacity in air trans-
port. First, input characteristics were identified 
and extracted using the mean impact value (MIV) 
method. In the next step, the NVARNN method is 
used to obtain forecast results through data model-
ing. According to this study, multivariate forecast-
ing methods consistently outperformed univariate 
forecasting methods. According to the results of the 
study, neural networks were superior to ARIMA and 
SARIMA models due to their complexity. Also, at 
the end of the study, six factors affecting the flow of 
passengers using air transport were identified [15], 
[16], [17], [18].

Looking at the research conducted in recent 
years, it appears that mixed forecasting models pro-
vide more effective results than individual models. 
In this study, the strengths of both unique model ar-
chitectures are combined. This is a very important 
factor for forecasting statistics. A new forecasting 
model combining SARIMA and Singular Vector 
Regression (SVR) models was presented by re-
searchers. The SARIMA model removed the non-
stationarity of the series by analyzing the time series 
and applying the seasonal differences in the correct 
order. SVM was used to capture linear and non-lin-
ear patterns in time series data [18], [19], [20], [21], 
[22].

 It should be noted that the forecasting model 
has only been tested in the short term. It was deter-
mined that there are factors that affect the demand 
for air transportation during the construction of the 
model and are not taken into account in the model. 
Therefore, sudden deviations in the model can be 
combined to increase the accuracy of the forecast.

3. Problem statement

Construction of forecasting models of non-
scheduled passenger air transportation based on 
ARIMA-SVM methods and comparative analysis of 
the obtained forecasting results.

4. Method and Methodology

The differential autoregressive moving average 
model (ARIMA) is an important method for study-
ing time series. In ARIMA (p, d, q), p is the num-
ber of autoregressive items, q is the moving aver-
age item number, and d is the number of differences 
made to make it a stationary sequence. The ARIMA 
(p, d, q) model is an extension of the ARMA (p, q) 
model. [5]

The ARIMA model in the following form:

Yt = c + yt + zt                            (1)

where,

yt = εt + θ1εt–1  + θ2εt–2  +....+ θqεt–q         (2)

zt = εt + θ1εt–1  + θ2εt–2  +....+ θqεt–q         (3)

We apply the method of least squares to find the 
unknown coefficients. For this, the following issue 
should be resolved:
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𝑡𝑡𝑡𝑡=1

.
→  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (4) 

𝐴𝐴𝐴𝐴 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛ 𝑚𝑚𝑚𝑚 �𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−2

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

 . . . .�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌𝑡𝑡𝑡𝑡−12
𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−2

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1. . . . . . .�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝 �𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−2

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝. . . . . . . .�𝑌𝑌𝑌𝑌�2𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

(6)

𝐵𝐵𝐵𝐵 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛ �𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡 𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−1

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

�𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=1

 𝑌𝑌𝑌𝑌�𝑡𝑡𝑡𝑡−𝑝𝑝𝑝𝑝
⎠

⎟
⎟
⎟
⎟
⎟
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Linear : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑏𝑏𝑏𝑏) = 𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏

Polynomial : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = (𝛾𝛾𝛾𝛾𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏)𝑁𝑁𝑁𝑁

Gaussian RBF: 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�−𝛾𝛾𝛾𝛾�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗� 𝑛𝑛𝑛𝑛�

Sigmoid : 𝐾𝐾𝐾𝐾 �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚ℎ�𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇  𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑏𝑏𝑏𝑏��

                     (4)

The solution to problem (4) is reduced to the 
following matrix equation:

Aφ = B                                (5)

is a dimensional symmetric matrix, the elements of 
which are as follows:
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Linear : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑏𝑏𝑏𝑏) = 𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏

Polynomial : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = (𝛾𝛾𝛾𝛾𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏)𝑁𝑁𝑁𝑁

Gaussian RBF: 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�−𝛾𝛾𝛾𝛾�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗� 𝑛𝑛𝑛𝑛�

Sigmoid : 𝐾𝐾𝐾𝐾 �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚ℎ�𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇  𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑏𝑏𝑏𝑏��

                    (7)

Considering expressions (6) and (7) in formula 
(5), unknown coefficients are founded.

The SVM kernel is considered a function that 
takes low-dimensional input space and transforms 
it into higher-dimensional space, usually it converts 
non-separable problems to separable problems. It 
is mostly useful in non-linear separation problems. 
Consider the following formulas:
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Linear : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑏𝑏𝑏𝑏) = 𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏

Polynomial : 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = (𝛾𝛾𝛾𝛾𝑤𝑤𝑤𝑤𝑇𝑇𝑇𝑇𝑥𝑥𝑥𝑥 + 𝑏𝑏𝑏𝑏)𝑁𝑁𝑁𝑁

Gaussian RBF: 𝐾𝐾𝐾𝐾(𝑤𝑤𝑤𝑤, 𝑥𝑥𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥�−𝛾𝛾𝛾𝛾�𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗� 𝑛𝑛𝑛𝑛�

Sigmoid : 𝐾𝐾𝐾𝐾 �𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚ℎ�𝛼𝛼𝛼𝛼𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇  𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑏𝑏𝑏𝑏��

(8)

(9)

(10)

(11)

5. Experimental results

First of all, statistical data for non-scheduled 
passenger air transportation was collected to build 
the calculation model. These data are presented in 
Figure 1. Statistics data covering the years 2020–
2023 (total 48 months) were used to build a fore-
cast model based on ARIMA-SVM models (Fig-
ure 1). Based on the given statistical indicators, a 
forecast for 2023 will be made based on the years 
2020–2022, and the results will be compared with 
the actual indicators of 2023.

Figure 1 – Monthly statistics of non-scheduled passenger air transportation for 2020–2023

Figure 2 shows the autocorrelation function for statistical data on non-scheduled passenger air 
transportation. It is clear from here that calculations will be made according to formula (2), taking into 
account (p = 3) in the ARIMA model. 

Figure 2 – Autocorrelation function for non-scheduled passenger air transportation

Here, UCL is the upper confident level and LCL is the lower confident level.
After the autocorrelation function is established, the ARIMA model is reported based on the 

preliminary results obtained. By substituting these values in formula (2), (ϕ1,𝜙𝜙𝜙𝜙2,𝜙𝜙𝜙𝜙3) and the values of c are 
obtained (reports were made in the MATLAB 2023a software package). Preliminary calculation results are 
shown in Figure.3. As can be seen from Figure. 3, If we compare the results obtained during the calculations 
based on the formula (2) with the actual indicators, we will see that there are serious differences in some 
points from the observations made. This indicates that those actual results are anomalous in the general 
results. In general, anomalous deviations in the general trend are observed in non-scheduled air 
transportation.
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Figure 2 shows the autocorrelation function 
for statistical data on non-scheduled passenger air 
transportation. It is clear from here that calculations 
will be made according to formula (2), taking into 
account (p = 3) in the ARIMA model. 

Here, UCL is the upper confident level and LCL 
is the lower confident level.

After the autocorrelation function is established, 
the ARIMA model is reported based on the prelimi-
nary results obtained. By substituting these values 
in formula (2), () and the values of c are obtained 

Figure 1 – Monthly statistics of non-scheduled passenger 
 air transportation for 2020–2023

(reports were made in the MATLAB 2023a software 
package). Preliminary calculation results are shown 
in Figure.3. As can be seen from Figure. 3, If we 
compare the results obtained during the calculations 
based on the formula (2) with the actual indicators, 
we will see that there are serious differences in some 
points from the observations made. This indicates 
that those actual results are anomalous in the general 
results. In general, anomalous deviations in the gen-
eral trend are observed in non-scheduled air trans-
portation.



6

Time series forecasting models of non-scheduled passenger air transportation 

Figure 1 – Monthly statistics of non-scheduled passenger air transportation for 2020–2023

Figure 2 shows the autocorrelation function for statistical data on non-scheduled passenger air 
transportation. It is clear from here that calculations will be made according to formula (2), taking into 
account (p = 3) in the ARIMA model. 

Figure 2 – Autocorrelation function for non-scheduled passenger air transportation

Here, UCL is the upper confident level and LCL is the lower confident level.
After the autocorrelation function is established, the ARIMA model is reported based on the 

preliminary results obtained. By substituting these values in formula (2), (ϕ1,𝜙𝜙𝜙𝜙2,𝜙𝜙𝜙𝜙3) and the values of c are 
obtained (reports were made in the MATLAB 2023a software package). Preliminary calculation results are 
shown in Figure.3. As can be seen from Figure. 3, If we compare the results obtained during the calculations 
based on the formula (2) with the actual indicators, we will see that there are serious differences in some 
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Figure 2 – Autocorrelation function for non-scheduled passenger air transportation

Figure 3 – Calculation results in the ARIMA model based on the formula (2)

Figure 4 – The differences between the real results and the calculation results during 
 the calculation in the ARIMA model is based on the formula (2)

Figure 3 – Calculation results in the ARIMA model based on the formula (2)

In the next step, in the ARIMA model, the difference between the initial calculation results and the 
real data is calculated (Figure 4), and the autocorrelation function (Figure 5) is constructed for this difference, 
and reports are continued. It is clear from Figure 5 that the next calculations will be made according to 
formula (3), taking into account (q = 3) in the ARIMA model. After solving the system equation obtained 
by writing the corresponding values in the formula (3), the values of (𝜃𝜃𝜃𝜃1𝜃𝜃𝜃𝜃2𝜃𝜃𝜃𝜃3) and are obtained (reports were 
made in the MATLAB 2023a software package). Calculation results are obtained by substituting these values 
into formula (3) (Figure. 6).

Figure 4 – The differences between the real results and the calculation results during the 
calculation in the ARIMA model is based on the formula (2)
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In the next step, in the ARIMA model, the dif-
ference between the initial calculation results and 
the real data is calculated (Figure 4), and the auto-
correlation function (Figure 5) is constructed for 
this difference, and reports are continued. It is clear 
from Figure 5 that the next calculations will be 
made according to formula (3), taking into account 

(q = 3) in the ARIMA model. After solving the sys-
tem equation obtained by writing the correspond-
ing values in the formula (3), the values of () and 
are obtained (reports were made in the MATLAB 
2023a software package). Calculation results are 
obtained by substituting these values into formula 
(3) (Figure. 6).

Figure 5 – The autocorrelation function of time series is calculated in the ARIMA model 
according to formula (2)

Figure 6 – Calculation results in the ARIMA model are based on the formula (3)

To determine the final calculation results in the ARIMA model (Φ1,𝜙𝜙𝜙𝜙2,𝜙𝜙𝜙𝜙3), (𝜀𝜀𝜀𝜀1, 𝜀𝜀𝜀𝜀2, 𝜀𝜀𝜀𝜀3), (𝜃𝜃𝜃𝜃1𝜃𝜃𝜃𝜃2𝜃𝜃𝜃𝜃3) the 
values of c and variables are substituted in the formula (1), respectively, and the final calculation results are 
obtained. The mentioned calculation results are shown in Figure.7. It is clear from Figure.7 that the 
calculation results are quite optimal and close to the real data. 

Figure 7 shows forecasting results for 2023 based on ARIMA-SVM models based on data for 2020–
2022. The obtained forecasting results were compared with the actual indicators for 2023. As observed from 
Figure 7, the ARIMA model results are closer to the actual results, but there are sudden deviations at several 
points. The main reason for the occurrence of this situation is related to the characteristics of non-scheduled 
passenger air transportation. Typically, when building statistical models of this type, a number of smoothing 
methods are used to account for sudden deviations in the forecast results. Forecasting results obtained in 
SVM models based on kernel functions are also close to the actual indicators. 
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Figure 5 – The autocorrelation function of time series is calculated  
in the ARIMA model according to formula (2)

Figure 6 – Calculation results in the ARIMA model are based on the formula (3)
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Figure 7 – Forecasting indicators of non-scheduled passenger air transportation based on ARIMA-SVM 
models

Figure 8 – Relative error of ARIMA-SVM models forecasting results based on actual indicators

Figure 8 shows the variation of the relative errors of the forecasting results obtained based on the 
ARIMA-SVM models with respect to the actual indicators. As can be seen from Figure 3, the relative errors 
of the models are, respectively, ARIMA (30.2%, Fine Gaussian SVM (25.2%), Medium Gaussian SVM 
(24.7%), and Coarse Gaussian SVM (28.1%). 
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scheduled passenger air transportation. The results show that the forecasting results obtained based on the 
Medium Gaussian SVM model are more effective compared to the actual indicators, and the relative error is 
smaller than other models. When comparing the results of the ARIMA model, it is observed that the model 
expresses the general trend of the actual indicators, but there are sudden deviations in the forecasting values 
(this can be explained by the characteristics of non-scheduled passenger air transportation or the influence 
of extraneous variables not taken into account in the model). It is possible to overcome this non-linear 
problem by applying SVM models based on kernel functions. For this reason, the application of the ARIMA-
SVM model in a hybrid form can be more effective in order to obtain more optimal forecast results. In 
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To determine the final calculation results in the 
ARIMA model (), (), () the values of c and variables 
are substituted in the formula (1), respectively, and 
the final calculation results are obtained. The men-
tioned calculation results are shown in Figure.7. It 
is clear from Figure.7 that the calculation results are 
quite optimal and close to the real data. 

Figure 7 shows forecasting results for 2023 
based on ARIMA-SVM models based on data for 
2020–2022. The obtained forecasting results were 
compared with the actual indicators for 2023. As 

observed from Figure 7, the ARIMA model results 
are closer to the actual results, but there are sudden 
deviations at several points. The main reason for the 
occurrence of this situation is related to the charac-
teristics of non-scheduled passenger air transporta-
tion. Typically, when building statistical models of 
this type, a number of smoothing methods are used 
to account for sudden deviations in the forecast re-
sults. Forecasting results obtained in SVM models 
based on kernel functions are also close to the actual 
indicators. 

Figure 7 – Forecasting indicators of non-scheduled passenger  
air transportation based on ARIMA-SVM models

Figure 8 – Relative error of ARIMA-SVM models forecasting results based  
on actual indicators
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Figure 8 shows the variation of the relative er-
rors of the forecasting results obtained based on the 
ARIMA-SVM models with respect to the actual 
indicators. As can be seen from Figure 3, the rela-
tive errors of the models are, respectively, ARIMA 
(30.2%, Fine Gaussian SVM (25.2%), Medium 
Gaussian SVM (24.7%), and Coarse Gaussian SVM 
(28.1%). 

6. Conclusion

In this paper, ARIMA and SVM (fine, medium, 
and coarse) methods are proposed for forecasting 
non-scheduled passenger air transportation. The 
results show that the forecasting results obtained 
based on the Medium Gaussian SVM model are 
more effective compared to the actual indicators, 
and the relative error is smaller than other models. 
When comparing the results of the ARIMA model, 
it is observed that the model expresses the general 
trend of the actual indicators, but there are sudden 
deviations in the forecasting values (this can be ex-
plained by the characteristics of non-scheduled pas-
senger air transportation or the influence of extrane-
ous variables not taken into account in the model). 

It is possible to overcome this non-linear problem 
by applying SVM models based on kernel functions. 
For this reason, the application of the ARIMA-SVM 
model in a hybrid form can be more effective in or-
der to obtain more optimal forecast results. In con-
clusion, it can be noted that the results obtained in 
the article can be used in the application of neuro 
models in future studies. 
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