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DETERMINING THE PROPERTIES  
OF ROCK SAMPLES USING DEEP MACHINE LEARNING

Porosity, absolute permeability, and diffusion coefficient are crucial characteristics governing fluid 
flow in the porous media of geological formations. Determining these properties traditionally involves 
resource-intensive and time-consuming processes. However, with the advancement of deep learning 
methods in the last 3–4 years, artificial neural networks have gained significant traction in predicting 
the transport properties of the fluid-porous medium system and the geometric characteristics of porous 
samples based on their images. This approach allows for the rapid determination of these properties with 
acceptable accuracy. 

The aim of this article is to conduct a scientific review of literature from open sources on the deter-
mination of absolute permeability, diffusion coefficient, and porosity from their images acquired through 
various scanning methods. Additionally, this article incorporates proprietary data, specifically images 
from four carbonate samples. Convolutional neural networks were examined as the method of choice.

The results of this article comprise a scientific review of moderate depth regarding the effectiveness 
and applicability of the approach for determining important characteristics of porous media using deep 
machine learning methods based on sample images. In this article, we also present the results of predict-
ing the open porosity of four carbonate samples based on their X-ray images using the convolutional 
neural network model we constructed. The conducted review has demonstrated that images (scans) of 
geological rock samples obtained through various scanning methods allow for the calculation of their 
transport properties with a high degree of accuracy using deep machine learning algorithms, and this can 
be achieved within a significantly short timeframe. This implies that deep machine learning can serve as 
a valuable alternative tool for estimating the properties of geological rock samples based on their images. 
The convolutional neural network model we constructed exhibited predictive capability for the porosity 
of three carbonate samples with a coefficient of determination ranging from 0.936 to 0.976.

Keywords: sample images, absolute permeability, diffusion coefficient, porosity, convolutional neu-
ral networks, machine learning, prediction.

1. Introduction

The transport properties of rocks, such as 
absolute permeability, diffusion coefficient, and 
porosity, are essential macroscopic characteristics 
that influence hydrocarbon production during the 
development of oil and gas fields, the assessment of 
CO₂ injection and storage capabilities in carbonate 
reservoirs, and the evaluation and monitoring of 
groundwater quality, among others. These properties 
are usually determined experimentally under 
laboratory conditions using specialized equipment 
or through numerical modeling. Laboratory 
measurements typically take a considerable amount 
of time and are costly, while numerical modeling 
also requires significant time, including processing 
numerous input parameters. Therefore, determining 
these properties through alternative methods based 
on existing analytical and experimental data about 
the porous medium is a relevant task.

Machine learning has become widely applied 
in data analysis and the prediction of important 
characteristics across many fields, such as 
medicine [1], economics [2, 3], geophysics [4–6], 
and others.

To date, many studies have been devoted to 
studying fluid flow in porous media at the pore scale 
[7–11] and predicting porous media characteristics 
[12–18] based on two-dimensional images combined 
with the lattice Boltzmann method.

This article presents a scientific review of 
the literature from open sources on determining 
the aforementioned key properties of porous 
materials based on their images acquired through 
various scanning methods. Additionally, the 
article provides the results of our research on 
calculating open porosity for four carbonate 
samples using their two-dimensional images 
obtained with an X-ray micro-computed 
tomography scanner.
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2. Materials and Methods

2.1. Calculation of the Diffusion Coefficient
The study [18] focuses on predicting 

the effective diffusion coefficient of two-
dimensional porous media using deep machine 
learningspecifically, convolutional neural 
networks (CNNs)based on their images. These 
two-dimensional porous media were generated 
using the pore structure reconstruction methoda 
quartet structure generation set. The effective 
diffusion coefficients were calculated using the 
lattice Boltzmann method (LBM), which served as 
the training data for the CNN model. The authors 
generated multiple media with porosity and 
diffusion coefficients ranging from 0.28 to 0.98 
and 0.1 to 1, respectively (Fig. 1). As seen in Fig. 
1, the lower diffusion coefficients are distributed 
with greater variability. The authors predicted the 
diffusion coefficient using CNN, which correlated 
with the diffusion coefficient calculated by LBM 
with an accuracy of 0.99 (Fig. 2a), whereas the 
widely used empirical Bruggeman equation allows 
for calculating the diffusion coefficient with 
comparatively lower accuracy (Fig. 2b), especially 
for low coefficient values. The authors of [18] also 
provide several ways to improve the accuracy of 
the diffusion coefficient prediction using CNN, 
particularly for low values (<0.1), such as using 
relative error instead of absolute error when 
minimizing the loss function and excluding dead-
end pores from the overall pore network.

In study [16], the prediction of the diffusion 
coefficient of three-dimensional granular porous 
media using CNN with self-enhancement of pore 
structure information is considered. The diffusion 
coefficient was calculated using the lattice 
Boltzmann method, and the granular porous 
media were reconstructed by stochastically 
generating spheres of different diameters with 
porosity ranging from 0.39 to 0.79 (Fig. 3). The 
authors showed that images with any porosity 
can be used for training with the same media 
structure: if images of low-porosity media are 
used for training and the diffusion coefficient of 
high-porosity media is predicted, and vice versa, 
the predicted diffusion coefficient will deviate 
from the true value similarly in both cases (Fig. 
4). The authors also demonstrated that using deep 

machine learning reduced the diffusion coefficient 
calculation time from 17 hours to 1 second, with 
the error between CNN and LBM results not 
exceeding 9%.

The prediction of the diffusion coefficient 
of sandy and fractured types of porous media is 
presented in study [19] using CNN based on their 
images. Notably, the considered porous media 
were reconstructed by randomly generating objects 
in a two-dimensional area, and their diffusion 
coefficients were calculated using the lattice 
Boltzmann method.

Figure 5 shows some of these media: the first 
two images correspond to sandy type porous media, 
and the last two images to fractured type. The main 
conclusion of this study is that the CNN model 
trained on data from sandy type porous media 
predicts the diffusion coefficient of porous media of 
the same type more accurately. This indicates that 
the question of developing a universal CNN model 
that predicts the diffusion coefficient of any type of 
porous media remains open.

2.2. Calculation of Absolute Permeability
The authors of the study [17] predicted the 

absolute permeability of carbonate and sandy 
samples based on their images using regression 
machine learning methods (shallow machine 
learning) and CNN. The input data consisted of 
images of a carbonate sample (Fig. 6) obtained 
using X-ray micro-computed tomography.

The results showed that CNN predicts the 
permeability of rocks better than regression machine 
learning methods. The petrophysical parameters 
of the considered samples were calculated using 
pore network modeling (PNM), LBM, and the full 
Navier-Stokes equations. PNM is the fastest method 
for calculating petrophysical parameters, whereas 
LBM and the full Navier-Stokes equations are the 
most accurate. As the authors demonstrated, all three 
methods were capable of predicting permeability 
with good accuracy. The main conclusions of this 
work are: 

a) CNN can predict the permeability of a sample 
1000 times faster than LBM; 

b) The prediction accuracy of the permeability 
of sandy samples (Fig. 7b) is higher than that of 
carbonate samples (Fig. 7a) due to the complex pore 
structure of the latter.
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Figure 1 – Generated porous media (a) and their diffusion coefficient (b) [18]:
а) selected porous media; b) diffusion coefficient distribution on porosity

Figure 2 – Diffusion coefficients obtained by different methods [18]: а) CNN-predicted  
vs. LBM-predicted diffusion coefficients; b) LBM-predicted vs. Bruggeman equation-predicted diffusion coefficients

Figure 3 – Generated porous media with different porosities [16]: а) with porosity 0.219;  
b) with porosity 0.3; c) with porosity 0.4; d) with porosity 0.5

 Porosity
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Figure 4 – Diffusion coefficient calculated by different methods [16] 

        
Figure 5 – Generated porous media with different porosities [19]: а) sandstone type  

with high porosity; b) sandstone type with low porosity; c) fractured type with high porosity;  
d) fractured type with low porosity

Some studies focus on predicting permeability 
based on images of samples obtained through 
various scanning methods, such as micro-computed 
tomography or electron microscopy, taking into 
account the petrophysical properties of rocks [15, 20]. 
In study [20], a new deep learning architecture (Fig. 
8b) was proposed for more accurate prediction of the 
absolute permeability of synthetic rocks, considering 
their porosity and tortuosity. The authors examined 
the influence of different controlling parameters, 
such as the number of dense layers and the learning 
rate, on the predictive capability of the constructed 
architecture. They showed that accounting for 
porosity and tortuosity when predicting absolute 
permeability based on rock images can improve the 
prediction quality. Their results demonstrated an 
increase in prediction accuracy from 0.985 to 0.994 
when using porosity and tortuosity as additional 
input data for training the CNN model (Fig. 9), 
while the permeability calculation time was reduced 
by 1000 times compared to the calculation time 
using LBM. Figure 6 – 3D image of a carbonate sample [17]
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It is evident that the quality of sample 
images affects the accuracy of predicting the 
transport properties of rocks, and it is not always 
sufficiently high. The quality of images depends 
on the resolution of the scanning equipment, 
such as X-ray micro-computed tomography or 
scanning electron microscopy. In study [21], a 
method for predicting the absolute permeability 
of porous media using deep learning based 

on low-resolution images is presented. This 
method relies on the combined use of CNN and 
an autoencodera specialized neural network 
architecture that allows for unsupervised learning 
using the backpropagation method. As the results 
showed, this approach not only enabled the use 
of low-resolution images for prediction but also 
improved the accuracy of predicting absolute 
permeability (Fig. 10).

Figure 7 – Comparison of predicted permeability of carbonate and sandstone samples  
with permeability calculated using LBM [17]: а) carbonate sample; b) sandstone sample

2.3. Calculation of Porosity 
Porosity describes the storage capacity of 

porous media, which is a fundamental factor 
in evaluating permeability, tortuosity, and the 
diffusion coefficient using various empirical 
equations, such as the Kozeny-Carman equation. 
It is typically determined by the fluid saturation 
method in laboratory conditions, which is time-
consuming. Machine learning can be a tool for 
rapidly determining the porosity of media with 
acceptable accuracy.

In study [22], the results of predicting the 
properties of porous media, including porosity, 
using deep learning based on two-dimensional 
tomographic images of three sandy samples 
are presented. The results show that CNNs can 
predict the porosity of sandy samples with high 
accuracy on filtered and segmented images 
(Fig. 11a), whereas predictions on raw images 
lead to relatively low accuracy (Fig. 11b). This 
indicates that the quality of rock sample images 
is important when constructing (training) neural 
network models. Figure 8 – CNN architectures [20]:  

а) conventional; b) proposed
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Figure 9 – Predicted permeabilities by conventional and proposed CNN architectures  
vs. LBM permeability [21]: а) conventional; b) proposed

Figure 10 – Predicted permeabilities using the conventional and proposed methodologies compared  
with the true permeability [21]: а) conventional; b) proposed

Figure 11 – Predicted porosities from processed and unprocessed images compared  
with true porosities [22]: а) from processed images; b) from unprocessed images
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3. Results

This article also presents our own results on 
predicting the open porosity of carbonate samples 
using CNN based on their two-dimensional 
images obtained with an X-ray micro-computed 
tomography scanner. Rectangular samples, cut from 
four cylindrical carbonate samples, were used as 
input data for training and prediction. The extraction 
of a rectangular sample with a square cross-section 

is schematically illustrated in Fig. 12. In this figure, 
the pore space is shown in dark blue, with the circle 
and square representing the cross-sections of the 
cylindrical and rectangular samples, respectively 
(Fig. 12a). The pore space of the selected rectangular 
samples is shown in Fig. 13. The constructed CNN 
model was trained and tested on images of sample 1, 
and then the porosity of the remaining samples was 
predicted. The three-dimensional model of sample 1 
consists of 2490 images.

Figure 12 – Schematic representation of the extraction process of rectangular sample:  
а) cylindrical sample; b) cross-section of the samples; c) extracted rectangular sample

Figure 13 – Pore space of extracted rectangular samples:  
а) sample 1; b) sample 2; c) sample 3; d) sample 4
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Figure 13 reveals the highly heterogeneous 
pore structure of the considered samples, which is 
confirmed by the distribution of the cross-section 
averaged porosity of the samples along their length 
(Fig. 14). As shown in Fig. 14, the samples exhibit 
varying degrees of heterogeneity. Sample 4 has 
relatively low porosity compared to the other 
samples. From the porosity distribution, regions of 
low and high porosity can be observed, indicating 
the presence of compacted layers and cavities within 
the rock structure. 

For the purpose of analyzing the sample images, 
a CNN with two-dimensional images as input and 
a regression layer as output was selected to predict 
porosity. The CNN architecture is an efficient tool 
for image processing and can be applied to various 
tasks, including classification, object detection, and 
regression. In this case, a regression layer was used 
as the model’s output. This layer typically consists 
of one or more fully connected layers that transform 
the features extracted by the convolutional layers 
into numerical predictions.

Figure 14 – Distribution of slice averaged porosity of considered samples along their length

The process of image analysis and porosity 
prediction using a Convolutional Neural Network 
(CNN) involves the following steps:

1. Data Preparation. It is crucial to properly 
prepare the data before training the neural network, 
including scaling them to a uniform size and 
normalizing pixel values. In this case, the images 
were normalized to a size of 120x120 pixels (Fig. 
15), and the pixel values were scaled to 1 or 0 to 
enhance learning.

2. CNN Architecture. CNN consists of various 
layers, such as convolutional layers, pooling layers, 
fully connected layers, and activation layers. 
The network architecture defines the number and 
sequence of these layers. For example, in this model, 
two convolutional layers with ReLU activation 
functions, pooling layers, two fully connected 
layers, and a regression layer at the output were used 
(Fig. 15).

3. Training the Network. Training the CNN 
involves passing the training data through the 
network and adjusting the neuron weights through 
backpropagation. The model was trained on sample 
1 and tested on others to evaluate its performance.

4. Optimization of Architecture and 
Hyperparameters. Experiments were conducted 
with different architectures and hyperparameters to 
optimize the model’s performance. This included 
changing the number of layers, filter sizes, activation 
functions, pooling parameters, and other network 
characteristics.

5. Regularization and Overfitting Control. To 
prevent overfitting, regularization methods such as 
Dropout and L2 regularization were applied. These 
methods helped improve the model’s ability to 
generalize data in the training set.

6. Optimization of Loss Function. Appropriate 
loss functions, such as mean squared error, and 
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optimizers like Adam were chosen for effective 
model training.

7. Evaluation and Comparison of Results. It 
is important to evaluate the model using various 

metrics, such as mean absolute error and prediction 
accuracy coefficient, and compare its results 
with other models or methods to determine its 
effectiveness.

 

Figure 15 – CNN architecture

 The CNN architecture used is shown in Figure 
15. The code was written in Python using the 
Keras library. The total number of training epochs 
(iterations) was 25, during which the loss functions 
significantly decreased (Figure 16). The mean 
squared error between the predicted and actual 
porosity was used as the loss function, which should 
decrease during the iterations (Figure 16). As shown 
in Figure 16, the mean squared error is significantly 
lower during validation than during testing because 
the constructed CNN model is first comprehensively 
tested and then further validated.

Figure 17 shows the results of predicting 
the open porosity of samples 2-4 using the 
constructed CNN model in comparison with the 

actual porosity. As shown in Figure 17, the CNN 
predicted the porosity of samples 2-4 with high 
accuracy, despite the fact that the constructed CNN 
model was trained and tested only on the images 
of sample 1, with a coefficient of determination 
ranging from 0.936 to 0.976. This figure also 
demonstrates that machine learning is capable 
of distinguishing the heterogeneous structure of 
the samples, with the predicted porosity closely 
matching the actual porosity along the length of 
the samples. This indicates that deep learning can 
be a valuable tool for the rapid calculation of rock 
sample properties with acceptable accuracy based 
on their images obtained by one of the material 
scanning methods.

Figure 16 – Change of loss function during testing and validation
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Figure 17 – Predicted and true porosity of samples: а) sample 2; b) samples 3, 4.
Predicted (light lines) and actual (dark lines)

 

 4. Conclusion

Based on the literature review conducted, we can 
conclude that images of rock samples obtained through 
various scanning methods allow for the calculation 
of their transport properties using deep machine 
learning with high accuracy and in a significantly 
shorter time. This indicates that deep learning can be 
a valuable tool for calculating the properties of rock 
samples based on their images obtained by one of the 
material scanning methods. CNNs are the primary 
deep learning algorithm for this task. However, we 
also note the following conclusions:

1) Deep learning can be applied to predict the 
properties of samples with various pore structures 
(fractured, heterogeneous, and cavernous carbonate 
and sandy rocks);

2) Deep learning significantly reduces the 
calculation time of transport properties of rock 
samples (from several tens of hours to several 
seconds) compared to the lattice Boltzmann method 
(LBM);

3) Deep learning models with additional 
options allow predicting sample properties based on 
low-quality images;

4) CNNs predict rock permeability better than 
regression machine learning methods;

5) In general, CNNs predict the properties 
of sandy samples better than carbonate 
samples due to the complex pore structure of 
the latter;

6) CNNs can recognize the spatial heterogeneity 
of sample porosity during training, which is 
considered in the prediction.
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