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INTEGRATING SLAM AND COMPUTER VISION  

FOR LIVESTOCK MANAGEMENT

Аbstract. The use of autonomous livestock detection is crucial in modern agriculture, providing efficient 
control and management of animals. This article explores the use of the SLAM (Simultaneous Localization 
and Mapping) algorithm in conjunction with computer vision to address various challenges in enhancing 
the capabilities of autonomous robots and detecting livestock. Integrating computer vision and SLAM 
technology allows autonomous robots to successfully navigate complex conditions, adapt to dynamic 
environments, and accurately determine the location of livestock in real-time. This research also presents 
a method for simultaneously estimating the agent’s position in space and mapping the surrounding en-
vironment. This approach enables robots to adapt to different lighting and weather conditions, ensuring 
reliable operation in various agricultural environments. Computer vision enables autonomous robots to 
accurately detect livestock based on visual data, enabling them to effectively monitor and manage ani-
mals. We discuss various issues that can be addressed using this combination of technologies, including 
navigation in unknown or changing environments, creating three-dimensional models of the surrounding 
environment, as well as autonomous control of robots and unmanned vehicles. This article also provides 
an overview of existing approaches and techniques used to address these issues, evaluating their ad-
vantages and limitations. In conclusion, we discuss the prospects for the development of this field and 
potential directions for future research.
Key words: simultaneous localization and mapping, computer vision, agriculture, modeling and simula-
tion.

1 Introduction

In the modern world, robotics and automation 
are rapidly advancing, offering unique opportunities 
for innovative solutions. Mobile robots are becoming 
an integral part of everyday life, penetrating 
various fields such as home cleaning, delivery, 
medical, and military services. A key aspect of their 
operation is the ability to autonomously navigate 
in the surrounding environment, emphasizing the 
importance of developing efficient SLAM methods 
and computer vision.

Upon reviewing research [1], it presents 
a proposition of an innovative mapping and 
navigation system in farmland, based on computer 
vision and Internet of Things (IoT) technologies. 
The system consists of three levels of subsystems: 
robotic vehicles, edge computing nodes, and a 
cloud server. The application of the Mesh-SLAM 
algorithm allows for rapidly and effectively 
creating a three-dimensional map of the farm with 
high accuracy. Experimental results demonstrate 
improved performance when using a distributed 
IoT architecture compared to a centralized cloud 

approach. In conclusion, the significance of this 
approach for implementing autonomous agricultural 
systems in real-world conditions is emphasized.

The article [2] describes the development and 
proposes an innovative agricultural robot called 
FaRo (FArming RObot), designed for autonomous 
cultivation of crops without human intervention. 
It highlights the importance of agriculture in 
meeting the needs of humanity, especially in the 
face of global population growth and a decrease 
in the number of agricultural workers. The main 
difference between FaRo and other agricultural 
platforms lies in its ability to autonomously perform 
the cultivation process from seeding to harvesting. 
Special attention is given to the harvesting tool, 
which is also explained and demonstrated. Overall, 
the article emphasizes the significance of FaRo in 
addressing the challenges of modern agriculture 
and its potential to revolutionize farming practices 
through automation and autonomy.

The result of the research [3] is the development 
and implementation of an autonomous robot with a 
weed detection system, which allows for effective 
weed control without damaging crops, as well as 
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addressing the issue of labor shortage in agriculture, 
which can lead to increased productivity and 
improved sustainability of agricultural production.

The work [4] presents the optimization of the 
You Only Look Once (YOLO) object detection 
algorithm for detecting traffic lights and controlling 
the steering angle for automatic lane keeping in a 
simulated environment. The research compares 
the performance of YOLO models for traffic light 
detection and proposes a convolutional neural 
network (CNN) for steering angle control. The 
proposed algorithms are tested on an autonomous 
model in the simulated environment of Gazebo, 
ROS. 

A systematic review [5] was conducted on 
the application of computer vision systems based 
on convolutional neural networks (CNNs) in 
animal husbandry. Five computer vision tasks 
were considered: image classification, object 
detection, semantic/instance segmentation, pose 
estimation, and tracking. The preparation of the 
system, selection of CNN architectures, algorithm 
development strategies, and performance evaluation 
of models were analyzed. The applications of these 
systems in animal husbandry were discussed, and 
future research directions were proposed, including 
the development of lightweight mobile systems, 
creation of specialized datasets, and advancement 
of CNN architectures for pose estimation, anomaly 
detection, and animal condition assessment.

The implementation [6] of robotic milking on 
dairy farms was discussed. It is noted that robotic 
milking reduces labor costs on farms of all sizes and 
offers a more flexible lifestyle for families milking 
up to 250 cows. Various aspects of barn layout 
and herd management were discussed, including 
the impact on milking frequency, prevention of 
lameness, cow routing, and grouping. It is suggested 
that free cow movement may be preferable with 
good management. The importance of lameness 
prevention is also emphasized, along with the need 
for further research in this area.

2 SLAM

SLAM (Simultaneous Localization and 
Mapping) is an actively researched area in robotics. 
It updates maps in unknown environments while 
retaining information about the robot’s location[7]. 
Challenges include sensor cumulative errors, data 
matching complexities, and environmental changes. 
The algorithm involves scanning, data matching, 
map updating, and resampling to create an accurate 
environment representation (detailed in Figure 1). 

Termination conditions include failed scanning or 
reaching the endpoint.

In work [8], a review of SLAM technology, 
particularly its visual version (vSLAM), which uses 
cameras for motion estimation and map building, 
was proposed. The article provided an overview of 
recent vSLAM algorithms on technical and historical 
aspects. Algorithms were categorized based on 
image processing approaches: feature-based, direct, 
and using RGB-D cameras.

In research [9], a new SLAM framework based 
on a combination of inexpensive LiDAR and video 
sensor was proposed. The framework introduced a 
new cost function considering both scanning data 
and images, and applied a Bag of Words model with 
visual features for loop closure detection. A new 
way of representing a 2.5D map was introduced, 
displaying both obstacles and visual features, along 
with a fast map transition method. The results of the 
proposed method demonstrated better performance 
compared to using only LiDAR or only cameras, 
and the transition speed using the 2.5D map was sig-
nificantly higher than using a traditional grid map.

Figure 1 – Block diagram of SLAM algorithm execution
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Figure 2 – Data collection about the terrain

Figure 3 – Final map result

Testing of the SLAM system on mobile robots 
in an indoor environment using ROS was conducted 
[10]. The experiments were carried out in the USAR 

environment created in the Gazebo simulator, using 
the gmapping, karto SLAM, and hector SLAM 
algorithms for room mapping. The results of the 
experiments showed that the SLAM system on 
mobile robots is feasible, and high-precision maps 
can be created.

3. Creating a virtual model of the surrounding 
environment in Gazebo and ROS

Management of 3D objects is implemented in 
the Gazebo environment. Gazebo is a real-time robot 
simulation and modeling environment that provides a 
convenient toolkit for creating virtual environments 
for testing and developing various robotic applications 
[11]. Gazebo is widely used in academic and industrial 
fi elds for testing control algorithms, navigation, 
visualization, and other aspects of robotics.

The robot will move in a virtual environment 
created in Gazebo using ROS [12] control, which 
already has a map of the surrounding environment. 
The robot’s body is modeled in Blender, and its 
sensors, including LiDAR, camera, and IMU, are 
integrated using URDF. The key features of Gazebo 
include realistic physical modeling of objects, 
support for various sensors, powerful visualization 
tools, fl exible extensibility through plugins, 
integration with ROS, and the ability to create 
various testing scenarios. Exporting 3D models to 
Gazebo can be done from various 3D modeling 
programs such as Blender or Autodesk Maya to 
formats supported by Gazebo, such as COLLADA 
or OBJ, followed by creating a model description in 
URDF format for use in simulation.

Figure 4 – 3D model of the robot and environment in Gazebo and ROS

The use of professional free and open-source 
software for creating three-dimensional computer 
graphics in Gazebo is widely used worldwide 

among researchers. For example, in work [13], the 
evolution of intelligent wheelchairs with new control 
systems aimed at assisting the user in increasing their 
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independence is described. At the beginning of the 
work, a 3D model of a motorized wheelchair with 
robotic tools for use in simulation environments 
is proposed. The model is based on the Robotic 
Operating System (ROS) and Gazebo, which 

facilitates the addition of sensors and actuators. The 
proposed approach also allows using one controller 
for both simulation and the real system. The 
developed model can be used to test new approaches 
in simulations before real-world implementation. 

Figure 5 – Modeling the Gazebo world in Blender

4. Study of Computer Vision Technologies 
in the Context of Robotics and Autonomous 
Systems

Key Concepts and Principles of Computer 
Vision: Computer vision, integrated into the field 
of artificial intelligence, deals with processing and 
analyzing visual information using computers. 
This process involves extracting key features from 
images or videos, such as edges, corners, colors, 
and textures. Image segmentation, dividing them 
into separate components, facilitates subsequent 
analysis of objects. Object classification in images 
or videos using trained models determines their 
categories. Also within computer vision, detection 
and highlighting of specific objects or regions of 
interest in the image occur.

The Importance of Computer Vision in Robotics 
and Autonomous Systems: Computer vision plays 
a crucial role in robotics, allowing machines to 
interpret visual information from the environment 
and interact with it. Integrating computer vision 
into robotics expands the capabilities of robots and 
facilitates a wide range of applications. Computer 
vision enables robots to perceive the surrounding 
environment, which is critical for navigation and 
interaction with objects and humans. Robots can 
use computer vision to detect objects, analyze 

their properties, and make appropriate decisions, 
such as object tracking or obstacle avoidance. 
Overall, computer vision opens up broad prospects 
for improving the functionality and efficiency of 
robots and autonomous systems, making them more 
capable of interacting with the surrounding world.

Improving Performance and Efficiency: 
Automating animal monitoring processes with 
YOLOv5 can increase farm productivity and 
efficiency. For example, in work [14], an efficient 
and autonomous system based on computer vision 
is presented for detecting wild animals in border 
areas. The method uses the YOLO object detection 
model to recognize six types of entities: humans and 
five different animal species. After detecting the 
animal, it is tracked to determine its intentions, and 
notifications are sent to the relevant authorities based 
on the analysis results. A prototype of the system 
based on Raspberry Pi devices with cameras is also 
described. The system demonstrates high accuracy 
in detecting and identifying animals (98.8%) and 
humans (99.8%) and can be easily expanded to 
detect other animal species with sufficient training 
data.”

“Farmers can quickly detect problems or 
anomalies in the behavior or condition of animals, 
allowing them to take measures to improve housing 
conditions and care.
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Figure 6 – Recognition of animals in a 3D simulation

YOLOv5 was used for real-time object 
recognition [15]. YOLO (You Only Look Once) is 
widely used in computer vision for object detection 
and classifi cation in images and videos.

Architecture of the YOLO-v5 Model. In 
YOLOv5, these components are used together 
to create a complete neural network architecture 

capable of detecting objects in images with high 
accuracy and effi  ciency.

Backbone: This part of the neural network 
architecture is responsible for extracting features 
from input images. Pre-trained convolutional neural 
networks such as ResNet, Darknet, or Effi  cientNet 
are commonly used.

Figure 7 – The architecture of YOLOv5
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Neck: This part of the architecture processes 
features obtained from the backbone to make them 
more suitable for further processing stages.

Head: This is the fi nal part of the architecture 
responsible for predicting the coordinates and 
classes of objects. Typically, the head consists of 
various layers such as convolutional layers, pooling 
layers, and fully connected layers.

C3, FOCUS, CONV, SPP: These are types of 
layers or modules used in the YOLOv5 architecture:

C3: Convolutional layer that performs 
convolution with multiple kernels (usually 3x3), 

allowing the model to extract more complex spatial 
features.

FOCUS: A special type of convolutional layer 
that helps reduce computation volume, speeding up 
image processing.

CONV: Ordinary convolutional layer 
that performs convolution operation on input 
data.

SPP (Spatial Pyramid Pooling): A layer that 
allows the model to work with objects of diff erent 
sizes in the image by creating a pyramid of features 
of diff erent scales.

   

Figure 8 – Components of the YOLOv5 Architecture

Figure 9 – Confusion Matrix Normalized
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Figure 10 – The overall training results

Training Results of the YOLOv5 Model.
1. train/box_loss: This is the loss function 

associated with the error in predicting bounding 
box coordinates of objects in the training 
dataset.

2. train/cls_loss: This is the loss function 
associated with the error in classifying objects in the 
training dataset.

3. train/dfl _loss: This is the loss function 
associated with the error in predicting additional 
features (e.g., orientations or sizes) of objects in the 
training dataset.

4. metrics/precision(B): Precision is a metric 
that measures the proportion of objects predicted as 
positive that are truly positive. B in this case likely 
indicates the batch of data.

5. metrics/recall(B): Recall is a metric that 
measures the proportion of true positive objects that 
were correctly detected by the model. B in this case 
likely indicates the batch of data.

6. val/box_loss: Same as train/box_loss but for 
validation (test) data.

7. val/cls_loss: Same as train/cls_loss but for 
validation (test) data.

8. val/dfl _loss: Same as train/dfl _loss but for 
validation (test) data.

9. metrics/mAP50(B): Mean Average Precision 
(mAP) at a specifi ed IoU (Intersection over Union) 
threshold of 50%. B in this case likely indicates the 
batch of data.

10. metrics/mAP50-95(B): Same as metrics/
mAP50 but for IoU ranging from 50% to 95%.

5 Conclusion

In the article, we discussed the importance 
of applying the SLAM algorithm in combination 
with computer vision for livestock detection in 
agriculture. The use of these technologies opens up 
new prospects for eff ective animal management and 
enhancing the functionality of autonomous robots 
in agricultural settings. Decent results in computer 
vision have been presented, and in the future, we 
will focus on improving recognition accuracy.
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